Capacitance estimation for dc-link capacitors in a back-to-back converter based on Artificial Neural Network algorithm

The reliability of dc-link capacitors in power electronic converters is one of the critical aspects to be considered in modern power converter design. The observation of their ageing process and the estimation of their health status have been an attractive subject for the industrial field and hence...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) s. 3682 - 3688
Hlavní autori: Soliman, Hammam, Huai Wang, Blaabjerg, Frede
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2016
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The reliability of dc-link capacitors in power electronic converters is one of the critical aspects to be considered in modern power converter design. The observation of their ageing process and the estimation of their health status have been an attractive subject for the industrial field and hence for the academic research field as well. The existing condition monitoring methods suffer from shortcomings such as low estimation accuracy, extra hardware, and also increased cost. Therefore, the developed methods of condition monitoring that are based on software solutions and algorithms could be the way out of the aforementioned challenges and shortcomings. In this paper, a pure software condition monitoring method based on Artificial Neural Network (ANN) algorithm is proposed. The implemented ANN estimates the capacitance of the dc-link capacitor in a back-to-back converter. The error analysis of the estimated results is also studied. The developed ANN algorithm has been implemented in a Digital Signal Processor (DSP) in order to have a proof of concept of the proposed method.
AbstractList The reliability of dc-link capacitors in power electronic converters is one of the critical aspects to be considered in modern power converter design. The observation of their ageing process and the estimation of their health status have been an attractive subject for the industrial field and hence for the academic research field as well. The existing condition monitoring methods suffer from shortcomings such as low estimation accuracy, extra hardware, and also increased cost. Therefore, the developed methods of condition monitoring that are based on software solutions and algorithms could be the way out of the aforementioned challenges and shortcomings. In this paper, a pure software condition monitoring method based on Artificial Neural Network (ANN) algorithm is proposed. The implemented ANN estimates the capacitance of the dc-link capacitor in a back-to-back converter. The error analysis of the estimated results is also studied. The developed ANN algorithm has been implemented in a Digital Signal Processor (DSP) in order to have a proof of concept of the proposed method.
Author Soliman, Hammam
Blaabjerg, Frede
Huai Wang
Author_xml – sequence: 1
  givenname: Hammam
  surname: Soliman
  fullname: Soliman, Hammam
  email: has@et.aau.dk
  organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark
– sequence: 2
  surname: Huai Wang
  fullname: Huai Wang
  email: hwa@et.aau.dk
  organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark
– sequence: 3
  givenname: Frede
  surname: Blaabjerg
  fullname: Blaabjerg, Frede
  email: fbl@et.aau.dk
  organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark
BookMark eNotkM1OwzAQhI0EB1p4Abj4BRxsx3GcYxUVqFR-DnCuNs4arKZ25Zgi3p5Ae_pWO7Mjzc7IeYgBCbkRvBCCN3er1-VTW0gudFFXQhpTnZGZqHjDhZz0S3JoYQ_WZwgWKY7Z7yD7GKiLifaWDT5sqT1aYhqpDxRoB3bLcmR_pDaGA6aMaVqP2NPpdpGyd956GOgzfqV_5O-YthSGj5h8_txdkQsHw4jXJ87J-_3yrX1k65eHVbtYMy9Mk1mpuQbVOKs61VkjexS8NLKzijuFBrWuHTfodI-m42CsqqV2chq1BiGack5uj7keETf7NNVLP5vTK8pfPClaTA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPEMC.2016.7512885
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509012109
9781509012107
EndPage 3688
ExternalDocumentID 7512885
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i189t-3606a49fc4b4bc82de10382bc40f4e8e667f08ef6de8b0a8c4726f2b0a66a1193
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:29 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i189t-3606a49fc4b4bc82de10382bc40f4e8e667f08ef6de8b0a8c4726f2b0a66a1193
PageCount 7
ParticipantIDs ieee_primary_7512885
PublicationCentury 2000
PublicationDate 20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 20160501
  day: 01
PublicationDecade 2010
PublicationTitle 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)
PublicationTitleAbbrev IPEMC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7395889
Snippet The reliability of dc-link capacitors in power electronic converters is one of the critical aspects to be considered in modern power converter design. The...
SourceID ieee
SourceType Publisher
StartPage 3682
SubjectTerms Artificial neural networks
Capacitance
Capacitors
Condition monitoring
Estimation
Power electronics
Training
Title Capacitance estimation for dc-link capacitors in a back-to-back converter based on Artificial Neural Network algorithm
URI https://ieeexplore.ieee.org/document/7512885
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA3b8OBJZRN_k4NHs6VtliZHGRsKOnZQ2W0kXxItaCddt7_fJJ0TwYunlCahkK_wvi957wWha1_bZC7VmgB3hjBrBNGMZwRYomWiQCbRrPrlIZ9OxXwuZy10s9PCWGsj-cz2w2M8yzdLWIetskHu0UmIYRu185w3Wq1vHQyVg_vZ-HEUyFq8vx3468aUCBiTg_996hD1fpR3eLbDlCPUsmUXbUYe0cAX8aE3uGI0ckPs801sgIQzWAzNkGW1wkWJFdYKgis_CS2O1PLA3cQBtAz2c2-rSBLyfx8O_hyxiYRwrN5fl1VRv3300PNk_DS6I9v7EkiRCFmTzBcjikkHTDMNIjU2uJ-nGhh1zArLee6osI4bKzRVAliech8oqjhXic_kjlGnXJb2BGFjlPaZl3ZSKpa6RAquBIUhdTzTnMIp6oY1W3w2lhiL7XKd_f36HO2HsDQ8wQvUqau1vUR7sKmLVXUV4_gF0RGjYg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0QTfSkBoy_7cGjhW4rXXs0BAIRCAc03Eh_KoluZgz-ftsOMSZePHVZ2yzpt-R9X_veKwD3rrZJbCwlUtRqRIxmSBKaIEUiySOheBTMql9G6WTC5nM-rYGHnRbGGBPIZ6blH8NZvs7V2m-VtVOHTox19sB-h5AYV2qtbyUM5u3htDfueroWbW2H_rozJUBG__h_HzsBzR_tHZzuUOUU1EzWAJuuwzTlynjf630xKsEhdBkn1Ar5U1ioqiF5sYLLDAoohfK-_Mi3MJDLPXsTetjS0M19LAJNyP1_0Dt0hCZQwqF4f82LZfn20QTP_d6sO0DbGxPQMmK8RIkrRwThVhFJpGKxNt7_PJaKYEsMM5SmFjNjqTZMYsEUSWPqQoUFpSJyudwZqGd5Zs4B1FpIl3tJy7kgsY04o4Jh1cGWJpJidQEafs0Wn5UpxmK7XJd_v74Dh4PZeLQYDSdPV-DIh6hiDV6DelmszQ04UJtyuSpuQ0y_AHpgpqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+8th+International+Power+Electronics+and+Motion+Control+Conference+%28IPEMC-ECCE+Asia%29&rft.atitle=Capacitance+estimation+for+dc-link+capacitors+in+a+back-to-back+converter+based+on+Artificial+Neural+Network+algorithm&rft.au=Soliman%2C+Hammam&rft.au=Huai+Wang&rft.au=Blaabjerg%2C+Frede&rft.date=2016-05-01&rft.pub=IEEE&rft.spage=3682&rft.epage=3688&rft_id=info:doi/10.1109%2FIPEMC.2016.7512885&rft.externalDocID=7512885