An O(n) Time-Complexity Matrix Transpose on Torus Array Processor

Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm can speed up many applications. In this paper, we propose a new algorithm for n x n matrix transposition on array processors connected in to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 Second International Conference on Networking and Computing S. 242 - 247
Hauptverfasser: Ravankar, A. A., Sedukhin, S. G.
Format: Tagungsbericht
Sprache:Englisch
Japanisch
Veröffentlicht: IEEE 01.11.2011
Schlagworte:
ISBN:1457717964, 9781457717963
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm can speed up many applications. In this paper, we propose a new algorithm for n x n matrix transposition on array processors connected in torus network. The algorithm has O(n) time complexity. The algorithm uses matrix-matrix multiply-add (MMA) operation for transposing the matrix. We show how to align data and give algorithm for generating permutation matrices. The entire n x n matrix transposition is carried out in 5n time-steps. This approach does not require any dedicated connections for matrix transposition. Both input and output matrices are in canonical (natural and not skewed) layout. We also discuss blocked matrix transposition.
AbstractList Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm can speed up many applications. In this paper, we propose a new algorithm for n x n matrix transposition on array processors connected in torus network. The algorithm has O(n) time complexity. The algorithm uses matrix-matrix multiply-add (MMA) operation for transposing the matrix. We show how to align data and give algorithm for generating permutation matrices. The entire n x n matrix transposition is carried out in 5n time-steps. This approach does not require any dedicated connections for matrix transposition. Both input and output matrices are in canonical (natural and not skewed) layout. We also discuss blocked matrix transposition.
Author Sedukhin, S. G.
Ravankar, A. A.
Author_xml – sequence: 1
  givenname: A. A.
  surname: Ravankar
  fullname: Ravankar, A. A.
  email: m5132105@u-aizu.ac.jp
  organization: Grad. Sch. of Comput. Sci. & Eng., Univ. of Aizu, Aizu-Wakamatsu, Japan
– sequence: 2
  givenname: S. G.
  surname: Sedukhin
  fullname: Sedukhin, S. G.
  email: sedukhin@u-aizu.ac.jp
  organization: Grad. Sch. of Comput. Sci. & Eng., Univ. of Aizu, Aizu-Wakamatsu, Japan
BookMark eNotjjtPwzAYAI0ACVqysbF4hCHBn5_xGEU8KhXKEObqS2IkoyaO7CA1_55KcMttp1uRizGMjpBbYAUAs4-b-r0uOAMopDgjmTUlM9oqqbSFc7ICqYwBY7W8IllK3-yE1lZyc02qaqS7-_GBNn5weR2G6eCOfl7oG87RH2kTcUxTSI6GkTYh_iRaxYgL_YihcymFeEMuv_CQXPbvNfl8fmrq13y7e9nU1Tb3UKo5R46O99AbZUF0basMCi55iZahdQxLx5lte6FRQwfQyv50z3uJvTBKtUKsyd1f1zvn9lP0A8Zlr0FACUL8Ajg0Sns
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNC.2011.43
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL(IEEE/IET Electronic Library )
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9780769545691
0769545696
EndPage 247
ExternalDocumentID 6131813
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i185t-a2ae2d1d75913cbb57a32428a90a9e0a8e209bd36a61c11b4d5692d4ad3755b33
IEDL.DBID RIE
ISBN 1457717964
9781457717963
IngestDate Wed Aug 27 04:11:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i185t-a2ae2d1d75913cbb57a32428a90a9e0a8e209bd36a61c11b4d5692d4ad3755b33
PageCount 6
ParticipantIDs ieee_primary_6131813
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationTitle 2011 Second International Conference on Networking and Computing
PublicationTitleAbbrev ICNC
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669427
ssib015832743
Score 1.4901439
Snippet Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm...
SourceID ieee
SourceType Publisher
StartPage 242
SubjectTerms Arrays
Image sensors
Layout
matrix multiplication
Matrix transpose
permutation matrices
Registers
Routing
Sensors
Signal processing algorithms
torus array processors
Title An O(n) Time-Complexity Matrix Transpose on Torus Array Processor
URI https://ieeexplore.ieee.org/document/6131813
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioEJUIt4ywMDSJjG8Sseq4oKJCgditStsmNH6pKgJK3ov8d20sLAwmZ78unO_s6P7zsAbl3MsIxHGeJcEeQQmiOZWI5iQwkVGptMh6olr2I6TRYLOeuAhz0XxlobPp_ZR98Mb_mmSNf-qmzooMcBEumCrhC84WrtYgczF5qilZZqdmEuaSwCl4sJd2iRnO4knto-2X-El8OX8XTcCHp6_s6vQisBZyZH_5vhMRj8EPbgbA9FJ6Bj8z4YjXL4fpffQ0_zQH7he_HLegvfvCz_F2x1zSsLixzOi3JdwVFZqi1syQNFOQAfk6f5-Bm1FRPQyuFujVSsbGywEUxikmrNhPIJU6JkpKSNVGLjSGpDuOI4xVhTw7h0blGGCMY0Iaeglxe5PQMwVW61ckaUJm4zdX42WYQt1S5Do6mM6Dnoe_OXn40oxrK1_OLv4UtwGC5jA4nvCvTqcm2vwUG6qVdVeRM8-Q3eEpgK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKQYIJUIt444EBJEzj-JF4rCqqVrShQ5G6VXbsSl0SlKaI_ntsJy0MLGy2J5_u7O_8-L4D4N7GDFvwYIE4lwRZhOZIxIajUFNCI4X1QvmqJaMoSeLZTEwa4GnHhTHG-M9n5tk1_Vu-ztO1uyrrWOixgET2wD6jNAwqttY2ejCzwRnV4lLVPswFDSPP5mKRPbYITrciT3Wf7L7Ci86wl_QqSU_H4PlVasUjTf_4f3M8Ae0fyh6c7MDoFDRM1gLdbgbfHrJH6IgeyC19J39ZbuDYCfN_wVrZfGVgnsFpXqxXsFsUcgNr-kBetMF7_2XaG6C6ZgJaWuQtkQylCTXWEROYpEqxSLqUKZYikMIEMjZhIJQmXHKcYqyoZlxYx0hNIsYUIWegmeWZOQcwlXa9ckakInY7tZ7WiwAbqmyORlMR0AvQcubPPypZjHlt-eXfw3fgcDAdj-ajYfJ6BY781ayn9F2DZlmszQ04SD_L5aq49V79Bv7Im1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+Second+International+Conference+on+Networking+and+Computing&rft.atitle=An+O%28n%29+Time-Complexity+Matrix+Transpose+on+Torus+Array+Processor&rft.au=Ravankar%2C+A.+A.&rft.au=Sedukhin%2C+S.+G.&rft.date=2011-11-01&rft.pub=IEEE&rft.isbn=9781457717963&rft.spage=242&rft.epage=247&rft_id=info:doi/10.1109%2FICNC.2011.43&rft.externalDocID=6131813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717963/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717963/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717963/sc.gif&client=summon&freeimage=true