An O(n) Time-Complexity Matrix Transpose on Torus Array Processor
Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm can speed up many applications. In this paper, we propose a new algorithm for n x n matrix transposition on array processors connected in to...
Gespeichert in:
| Veröffentlicht in: | 2011 Second International Conference on Networking and Computing S. 242 - 247 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
IEEE
01.11.2011
|
| Schlagworte: | |
| ISBN: | 1457717964, 9781457717963 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm can speed up many applications. In this paper, we propose a new algorithm for n x n matrix transposition on array processors connected in torus network. The algorithm has O(n) time complexity. The algorithm uses matrix-matrix multiply-add (MMA) operation for transposing the matrix. We show how to align data and give algorithm for generating permutation matrices. The entire n x n matrix transposition is carried out in 5n time-steps. This approach does not require any dedicated connections for matrix transposition. Both input and output matrices are in canonical (natural and not skewed) layout. We also discuss blocked matrix transposition. |
|---|---|
| AbstractList | Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm can speed up many applications. In this paper, we propose a new algorithm for n x n matrix transposition on array processors connected in torus network. The algorithm has O(n) time complexity. The algorithm uses matrix-matrix multiply-add (MMA) operation for transposing the matrix. We show how to align data and give algorithm for generating permutation matrices. The entire n x n matrix transposition is carried out in 5n time-steps. This approach does not require any dedicated connections for matrix transposition. Both input and output matrices are in canonical (natural and not skewed) layout. We also discuss blocked matrix transposition. |
| Author | Sedukhin, S. G. Ravankar, A. A. |
| Author_xml | – sequence: 1 givenname: A. A. surname: Ravankar fullname: Ravankar, A. A. email: m5132105@u-aizu.ac.jp organization: Grad. Sch. of Comput. Sci. & Eng., Univ. of Aizu, Aizu-Wakamatsu, Japan – sequence: 2 givenname: S. G. surname: Sedukhin fullname: Sedukhin, S. G. email: sedukhin@u-aizu.ac.jp organization: Grad. Sch. of Comput. Sci. & Eng., Univ. of Aizu, Aizu-Wakamatsu, Japan |
| BookMark | eNotjjtPwzAYAI0ACVqysbF4hCHBn5_xGEU8KhXKEObqS2IkoyaO7CA1_55KcMttp1uRizGMjpBbYAUAs4-b-r0uOAMopDgjmTUlM9oqqbSFc7ICqYwBY7W8IllK3-yE1lZyc02qaqS7-_GBNn5weR2G6eCOfl7oG87RH2kTcUxTSI6GkTYh_iRaxYgL_YihcymFeEMuv_CQXPbvNfl8fmrq13y7e9nU1Tb3UKo5R46O99AbZUF0basMCi55iZahdQxLx5lte6FRQwfQyv50z3uJvTBKtUKsyd1f1zvn9lP0A8Zlr0FACUL8Ajg0Sns |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICNC.2011.43 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL(IEEE/IET Electronic Library ) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9780769545691 0769545696 |
| EndPage | 247 |
| ExternalDocumentID | 6131813 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i185t-a2ae2d1d75913cbb57a32428a90a9e0a8e209bd36a61c11b4d5692d4ad3755b33 |
| IEDL.DBID | RIE |
| ISBN | 1457717964 9781457717963 |
| IngestDate | Wed Aug 27 04:11:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i185t-a2ae2d1d75913cbb57a32428a90a9e0a8e209bd36a61c11b4d5692d4ad3755b33 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6131813 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-11-01 |
| PublicationDateYYYYMMDD | 2011-11-01 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 Second International Conference on Networking and Computing |
| PublicationTitleAbbrev | ICNC |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000669427 ssib015832743 |
| Score | 1.4901439 |
| Snippet | Matrix transpose is an essential operation in many applications like signal processing (ex. linear transforms) etc. and an efficient matrix transpose algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 242 |
| SubjectTerms | Arrays Image sensors Layout matrix multiplication Matrix transpose permutation matrices Registers Routing Sensors Signal processing algorithms torus array processors |
| Title | An O(n) Time-Complexity Matrix Transpose on Torus Array Processor |
| URI | https://ieeexplore.ieee.org/document/6131813 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioEJUIt4ywMDSJjG8Sseq4oKJCgditStsmNH6pKgJK3ov8d20sLAwmZ78unO_s6P7zsAbl3MsIxHGeJcEeQQmiOZWI5iQwkVGptMh6olr2I6TRYLOeuAhz0XxlobPp_ZR98Mb_mmSNf-qmzooMcBEumCrhC84WrtYgczF5qilZZqdmEuaSwCl4sJd2iRnO4knto-2X-El8OX8XTcCHp6_s6vQisBZyZH_5vhMRj8EPbgbA9FJ6Bj8z4YjXL4fpffQ0_zQH7he_HLegvfvCz_F2x1zSsLixzOi3JdwVFZqi1syQNFOQAfk6f5-Bm1FRPQyuFujVSsbGywEUxikmrNhPIJU6JkpKSNVGLjSGpDuOI4xVhTw7h0blGGCMY0Iaeglxe5PQMwVW61ckaUJm4zdX42WYQt1S5Do6mM6Dnoe_OXn40oxrK1_OLv4UtwGC5jA4nvCvTqcm2vwUG6qVdVeRM8-Q3eEpgK |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKQYIJUIt444EBJEzj-JF4rCqqVrShQ5G6VXbsSl0SlKaI_ntsJy0MLGy2J5_u7O_8-L4D4N7GDFvwYIE4lwRZhOZIxIajUFNCI4X1QvmqJaMoSeLZTEwa4GnHhTHG-M9n5tk1_Vu-ztO1uyrrWOixgET2wD6jNAwqttY2ejCzwRnV4lLVPswFDSPP5mKRPbYITrciT3Wf7L7Ci86wl_QqSU_H4PlVasUjTf_4f3M8Ae0fyh6c7MDoFDRM1gLdbgbfHrJH6IgeyC19J39ZbuDYCfN_wVrZfGVgnsFpXqxXsFsUcgNr-kBetMF7_2XaG6C6ZgJaWuQtkQylCTXWEROYpEqxSLqUKZYikMIEMjZhIJQmXHKcYqyoZlxYx0hNIsYUIWegmeWZOQcwlXa9ckakInY7tZ7WiwAbqmyORlMR0AvQcubPPypZjHlt-eXfw3fgcDAdj-ajYfJ6BY781ayn9F2DZlmszQ04SD_L5aq49V79Bv7Im1E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+Second+International+Conference+on+Networking+and+Computing&rft.atitle=An+O%28n%29+Time-Complexity+Matrix+Transpose+on+Torus+Array+Processor&rft.au=Ravankar%2C+A.+A.&rft.au=Sedukhin%2C+S.+G.&rft.date=2011-11-01&rft.pub=IEEE&rft.isbn=9781457717963&rft.spage=242&rft.epage=247&rft_id=info:doi/10.1109%2FICNC.2011.43&rft.externalDocID=6131813 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717963/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717963/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717963/sc.gif&client=summon&freeimage=true |

