Scalarizing Functions in Bayesian Multiobjective Optimization
Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving computationally expensive multi-and many-objective optimization problems using Bayesian multiobjective optimization is scarce. Scal...
Gespeichert in:
| Veröffentlicht in: | 2020 IEEE Congress on Evolutionary Computation (CEC) S. 1 - 8 |
|---|---|
| 1. Verfasser: | |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2020
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving computationally expensive multi-and many-objective optimization problems using Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we compare 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models on them. We use the expected improvement as infill criterion (or acquisition function) to update the models. In particular, we analyze the performance of different scalarizing functions on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights in using a scalarizing function, especially for problems with a large number of objectives. |
|---|---|
| AbstractList | Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving computationally expensive multi-and many-objective optimization problems using Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we compare 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models on them. We use the expected improvement as infill criterion (or acquisition function) to update the models. In particular, we analyze the performance of different scalarizing functions on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights in using a scalarizing function, especially for problems with a large number of objectives. |
| Author | Chugh, Tinkle |
| Author_xml | – sequence: 1 givenname: Tinkle surname: Chugh fullname: Chugh, Tinkle organization: University of Exeter,Department of Computer Science,UK |
| BookMark | eNotj8FKAzEURSPowla_QIT8wIx5SSbJLFzo0KpQ6cLuSzJ5kSfTtMxMhfbrbbGrC-ceLtwJu87bjIw9gigBRP3UzBrtjDClFFKUNbjKCnPFJmClA1PLGm7Z81frO9_TkfI3n-9zO9I2D5wyf_UHHMhn_rnvTjD84Kn7Rb7cjbShoz-Ld-wm-W7A-0tO2Wo-WzXvxWL59tG8LAoCp8dCa4lWYh2iAFmZ4JNDBUlYcGdkYohgUwzJSRFthaiTca2CNiptTKWm7OF_lhBxvetp4_vD-nJI_QE3ZkY3 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC48606.2020.9185706 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728169291 9781728169293 |
| EndPage | 8 |
| ExternalDocumentID | 9185706 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i184t-442e72e9bd01256baf8e31f0718bd016dbd17fdbf820d75ee4f68c31cd346653 |
| IEDL.DBID | RIE |
| IngestDate | Mon Jul 08 05:38:35 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i184t-442e72e9bd01256baf8e31f0718bd016dbd17fdbf820d75ee4f68c31cd346653 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9185706 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 IEEE Congress on Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9790803 |
| Snippet | Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Bayes methods Buildings Chebyshev approximation evolutionary multiobjective optimization Gaussian processes Linear programming metamodel Optimization methods Pareto optimality surrogate |
| Title | Scalarizing Functions in Bayesian Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/9185706 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eBJpRXf5ODRtM1mN4-rSxdPtYceeit5zMIKbqW2gv31JrtLRfDiLQyBMEmYbyaZbwbggWtWMmEkNdpYmqLi1AbUpTx1ygpplMa22YSczdRyqec9eDxwYRCxST7DURw2f_l-7XbxqWysY-GiWF_7SErRcrU6Ug6b6HE-zWNHpZh3kExG3dxfTVMazChO_7faGQx_yHdkfoCVc-hhPYD4URJi0GofRKQIWNRcF1LV5Ml8YSRCkoZKu7avrQUjL8EWvHUkyyEsiukif6Zd5wNahYhrS9M0QZmgtj7gRyasKRVyVgZ3QEWR8NYzWXpbBvz2MkNMS6EcZ87zVIiMX0C_Xtd4CcRyhgla5ZwMvhKitdIY46TjwpvEZVcwiJqv3tvaFqtO6eu_xTdwEje3TVe9hf52s8M7OHaf2-pjc98cyDevo4_L |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1KFfSk0orf5uDRtM1mN8leLS0Va-2hh95KPmZhBbeltoL-epPdpSJ48RaGQJgk5GWSefMA7njKMia0pDrVhsaoODUedSmPrTJCapViJTYhJxM1n6fTBtzvuDCIWCafYSc0y798t7Tb8FTWTUPholBfey8oZ9VsrZqWw3pptz_oB02lkHkQ9Tp171-yKSVqDI_-N94xtH_od2S6A5YTaGDRgvBV4qPQ_MubyNCjUblhSF6QB_2JgQpJSjLt0rxWZxh58afBW02zbMNsOJj1R7TWPqC5j7k2NI4jlBGmxnkESYTRmULOMn8hUMEknHFMZs5kHsGdTBDjTCjLmXU8FiLhp9AslgWeATGcYYRGWSv9bQnRGKm1ttJy4XRkk3NoBc8Xq6q6xaJ2-uJv8y0cjGbP48X4cfJ0CYdhoqvk1StobtZbvIZ9-7HJ39c35eJ8A1yTkxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Scalarizing+Functions+in+Bayesian+Multiobjective+Optimization&rft.au=Chugh%2C+Tinkle&rft.date=2020-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCEC48606.2020.9185706&rft.externalDocID=9185706 |