Intelligent Optimization Algorithm for Employee Performance Appraisal of Internet Companies Based on Time Series Model
Therefore, this study adopts the time series decomposition model, by decomposing the time series into seasonal terms and trend terms, and using the original first-order and second-order adaptive coefficient prediction methods for the trend terms and the first-order and second-order autonomic methods...
Saved in:
| Published in: | International Conference on Intelligent Computing and Control Systems (Online) pp. 196 - 199 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
25.05.2022
|
| Subjects: | |
| ISSN: | 2768-5330 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Therefore, this study adopts the time series decomposition model, by decomposing the time series into seasonal terms and trend terms, and using the original first-order and second-order adaptive coefficient prediction methods for the trend terms and the first-order and second-order autonomic methods of particle swarm optimization. Adaptation coefficient prediction method, an exponential smoothing prediction model based on time series decomposition mode and particle swarm optimization algorithm is proposed., assessment subject, assessment process, etc., purposefully propose optimization countermeasures and algorithms. |
|---|---|
| AbstractList | Therefore, this study adopts the time series decomposition model, by decomposing the time series into seasonal terms and trend terms, and using the original first-order and second-order adaptive coefficient prediction methods for the trend terms and the first-order and second-order autonomic methods of particle swarm optimization. Adaptation coefficient prediction method, an exponential smoothing prediction model based on time series decomposition mode and particle swarm optimization algorithm is proposed., assessment subject, assessment process, etc., purposefully propose optimization countermeasures and algorithms. |
| Author | Kuang, Huixia |
| Author_xml | – sequence: 1 givenname: Huixia surname: Kuang fullname: Kuang, Huixia email: Kuangguixia1922@yandex.com organization: Zhuhai City Polytechnic,Zhuhai,China,519100 |
| BookMark | eNotkN1KwzAYhqMoOOeuwJPcQGd-2iQ9nGVqYTJh83h8bb_OSJuUNAjz6u1wR-_PwQPve09unHdICOVsyTnLn8qiLIpdJjU3S8GEWObamDRLr8hiclypLOVMZvk1mQmtTJJJye7IYhy_GWNSMKmFmpGf0kXsOntEF-l2iLa3vxCtd3TVHX2w8aunrQ903Q-dPyHSDwxT7sHVSFfDEMCO0FHf0jMoOIy08P0AzuJIn2HEhk6sve2R7jCcy3ffYPdAblvoRlxcdE4-X9b74i3ZbF_LYrVJLDdpTKSoWpCmUazJpw2QMS4E6NrktZBMG9UIkQKAqTNZ81pVTSW1qVqmQGispJyTx3-uRcTDEGwP4XS4PCX_AKYSYYQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICICCS53718.2022.9788454 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665410359 1665410353 |
| EISSN | 2768-5330 |
| EndPage | 199 |
| ExternalDocumentID | 9788454 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i184t-32bfa38d60d9768a50122a7c89c230786d224aaa8c53c1c6bdb378bf06a27eb33 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:24:06 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i184t-32bfa38d60d9768a50122a7c89c230786d224aaa8c53c1c6bdb378bf06a27eb33 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9788454 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-25 |
| PublicationDateYYYYMMDD | 2022-05-25 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Intelligent Computing and Control Systems (Online) |
| PublicationTitleAbbrev | ICICCS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203726 |
| Score | 1.8028548 |
| Snippet | Therefore, this study adopts the time series decomposition model, by decomposing the time series into seasonal terms and trend terms, and using the original... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 196 |
| SubjectTerms | Adaptation models Data models Employee Performance Appraisal Intelligent Optimization Algorithm Internet Companies Prediction algorithms Predictive models Smoothing methods Time series analysis Time Series Model |
| Title | Intelligent Optimization Algorithm for Employee Performance Appraisal of Internet Companies Based on Time Series Model |
| URI | https://ieeexplore.ieee.org/document/9788454 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF3a4sGTSit-swePpm52k83mqMFiL7WgQm9lP7XQNqVN-_udTdIUwYu3sJAQdth982bmzSB0zwyj1jk434rrAFxqEkhFXEAi6bgDwhKqqBw2kYxGYjJJxy300GhhrLVl8Znt-8cyl29yvfWhMt8NVkRx1EbtJOGVVquJpzBKWEL5vliHpI_DbJhl7zGD2xd4IKX9-vVfc1RKGBmc_O8HTlHvoMfD4wZpzlDLLrtoN2y6aRb4DU7-opZU4qf5Vw6c_3uBwSPF-5m-eHzQCGBwPtdytpFznDtcRQVtgavLAbgzfgZwMxi-5SUi2IfQYNHPTZv30Ofg5SN7DeopCsEM2FsRMKqcZMJwYsD1EDL2yTSZaJFqXwQuuAEUl1IKHTMdaq6MYolQjnBJE6Da7Bx1lvnSXiDMpDemDR3RLOJMpzYE_y8NpQoB8xi9RF2_Z9NV1ShjWm_X1d_L1-jYm8Wn4ml8gzrFemtv0ZHeFbPN-q607g_Imqcq |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zCnpS2cTf5uDRzjRp0_SoRVlxzoETdhtpmuhgW2Xr9vf70nYdghdvJYdQ8ki-9733vvcQumUpo9oYuN8JVw641MSRCTEO8aThBgiLm3jFsImg3xejUThooLtaC6O1LorPdMd-Frn8NFMrGyqz3WCF53s7aNf3PEpKtVYdUWGUsIDyTbkOCe_jKI6id5_B-wtMkNJOtcGvSSoFkDwf_u8XjlB7q8jDgxprjlFDz1toHdf9NHP8Bnd_Vokq8cP0MwPW_zXD4JPizVRfPNiqBDC4nws5Wcopzgwu44I6x-XzAOwZPwK8pRj2siIRbINosGgnp03b6OP5aRh1nWqOgjMB_pY7jCZGMpFykoLzIaRv02kyUCJUtgxc8BRwXEoplM-Uq3iSJiwQiSFc0gDINjtBzXk216cIM2nNqV1DFPM4U6F2wQMMXZm4gHqMnqGWPbPxd9kqY1wd1_nfyzdovzt87Y17cf_lAh1YE9nEPPUvUTNfrPQV2lPrfLJcXBeW_gGnF6px |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Intelligent+Computing+and+Control+Systems+%28Online%29&rft.atitle=Intelligent+Optimization+Algorithm+for+Employee+Performance+Appraisal+of+Internet+Companies+Based+on+Time+Series+Model&rft.au=Kuang%2C+Huixia&rft.date=2022-05-25&rft.pub=IEEE&rft.eissn=2768-5330&rft.spage=196&rft.epage=199&rft_id=info:doi/10.1109%2FICICCS53718.2022.9788454&rft.externalDocID=9788454 |