Atypical behavior identification in large-scale network traffic

Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE Symposium on Large Data Analysis and Visualization s. 15 - 22
Hlavní autoři: Best, D. M., Hafen, R. P., Olsen, B. K., Pike, W. A.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2011
Témata:
ISBN:9781467301565, 1467301566
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.
AbstractList Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.
Author Hafen, R. P.
Best, D. M.
Pike, W. A.
Olsen, B. K.
Author_xml – sequence: 1
  givenname: D. M.
  surname: Best
  fullname: Best, D. M.
  email: daniel.best@pnnl.gov
  organization: Pacific Northwest Nat. Lab., Richland, WA, USA
– sequence: 2
  givenname: R. P.
  surname: Hafen
  fullname: Hafen, R. P.
  email: ryan.hafen@pnnl.gov
  organization: Pacific Northwest Nat. Lab., Richland, WA, USA
– sequence: 3
  givenname: B. K.
  surname: Olsen
  fullname: Olsen, B. K.
  email: bryan.olsen@pnnl.gov
  organization: Pacific Northwest Nat. Lab., Richland, WA, USA
– sequence: 4
  givenname: W. A.
  surname: Pike
  fullname: Pike, W. A.
  email: william.pike@pnnl.gov
  organization: Pacific Northwest Nat. Lab., Richland, WA, USA
BookMark eNo1j89KxDAYxCMq6K59APGSF-iaL2nT5CRlXf9AwYt6XZLmi0ZruqRB2be34DqXYYYfA7MgJ3GMSMglsBUA09fdbfu64gxgJZnmAvgRWUAlG8GgrtUxKXSj_rOsz0gxTR9slpRaKXlObtq834XeDNTiu_kOY6LBYczBz2UOY6Qh0sGkNyynmUIaMf-M6ZPmZPzMXJBTb4YJi4Mvycvd5nn9UHZP94_rtisDKJHLvmq4tMCVF2CdcLrSsgdnK2-l4w1TYJz3CnyjsTEADi1TzHvfS-udcWJJrv52AyJudyl8mbTfHj6LX7pgTWE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/LDAV.2011.6092312
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467301558
9781467301558
EndPage 22
ExternalDocumentID 6092312
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i183t-c4726b128f31bd3d9496c1db4fb6d27081adff81f79e7a11deb080fffc6bfdad3
IEDL.DBID RIE
ISBN 9781467301565
1467301566
IngestDate Wed Aug 27 03:10:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i183t-c4726b128f31bd3d9496c1db4fb6d27081adff81f79e7a11deb080fffc6bfdad3
PageCount 8
ParticipantIDs ieee_primary_6092312
PublicationCentury 2000
PublicationDate 2011-10
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10
PublicationDecade 2010
PublicationTitle 2011 IEEE Symposium on Large Data Analysis and Visualization
PublicationTitleAbbrev LDAV
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669886
Score 1.5014502
Snippet Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic....
SourceID ieee
SourceType Publisher
StartPage 15
SubjectTerms Analytical models
cyber analytics
Data models
Data visualization
IP networks
large-scale data
Measurement
Time series
Visual analytics
Title Atypical behavior identification in large-scale network traffic
URI https://ieeexplore.ieee.org/document/6092312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eBJpRXf5ODR2GZ3m8dJilo8SOlBpbeSxwQWZFvareC_N9ndrghevGVDCJvH7jeTfN8MwI0ceeWSzFFjFNKAeEglpp7a6F1nKmxrrJNNiOlUzudq1oHbVguDiBX5DO9isbrLd0u7jUdlAz6M5kj44e4JwWutVnueEqAz9Mwr7RaP2zbYKbuQTs3zqLnVZEM1eHkcv9cBPJtOf2VXqcBlcvi_1zqC_o9Kj8xa_DmGDhY9uB-XX6s48WQnwCe5axhB1SKQvCAfkf5NN6EVkqLmgZNyrWM0iT68TZ5eH55pkySB5uFrLKnNRMJNQBmfMuNSpzLFLXMm84a7RATE1857ybxQKDRjDk0wEr33lhvvtEtPoFssCzwFkkiUo6GWVmmWGSV0cF69N05JHfwOVGfQi4NfrOo4GItm3Od_V1_AQbLjy7FL6JbrLV7Bvv0s8836ulq8b77KmAc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jCnpS2cTf5uDRuKZN0-QkQx0T59hhym4jaV6gIN3oOsH_3qTtJoIXb2kIofnRfu8l3_ceQjcittKEzBCtJRCHeEAERJak3rtm0m1rqJNNJOOxmM3kpIVut1oYAKjIZ3Dni9Vdvlmka39U1uOBN0fcD3cnZiwMarXW9kTFgafrm1fqLe43rrNUNkGdmue4udekgeyNHvvvdQjPpttf-VUqeBkc_O_FDlH3R6eHJ1sEOkItyDvovl9-Lf3U440EH2em4QRVy4CzHH94AjhZuVaA85oJjstC-XgSXfQ2eJo-DEmTJoFk7nssScqSkGuHMzai2kRGMslTajSzmpswcZivjLWC2kRCoig1oJ2ZaK1NubZGmegYtfNFDicIhwJEHCiRSkWZloly7qu12kihnOcB8hR1_ODnyzoSxrwZ99nf1ddobzh9Hc1Hz-OXc7Qfbthz9AK1y2INl2g3_SyzVXFVLeQ325ObTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Symposium+on+Large+Data+Analysis+and+Visualization&rft.atitle=Atypical+behavior+identification+in+large-scale+network+traffic&rft.au=Best%2C+D.+M.&rft.au=Hafen%2C+R.+P.&rft.au=Olsen%2C+B.+K.&rft.au=Pike%2C+W.+A.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781467301565&rft.spage=15&rft.epage=22&rft_id=info:doi/10.1109%2FLDAV.2011.6092312&rft.externalDocID=6092312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/sc.gif&client=summon&freeimage=true