CoCaR: Enabling Efficient Dynamic DNN-Based Model Caching and Request Routing in MEC

Mobile edge computing (MEC) can pre-cache deep neural networks (DNNs) near end-users, providing low-latency services and improving users' quality of experience (QoE). However, caching all DNN models at edge servers with limited capacity is difficult, and the impact of model loading time on QoE...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annual Joint Conference of the IEEE Computer and Communications Societies s. 1 - 10
Hlavní autori: Qiu, Shuting, Dong, Fang, Tan, Siyu, Shen, Dian, Zhou, Ruiting, Fan, Qilin
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 19.05.2025
Predmet:
ISSN:2641-9874
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mobile edge computing (MEC) can pre-cache deep neural networks (DNNs) near end-users, providing low-latency services and improving users' quality of experience (QoE). However, caching all DNN models at edge servers with limited capacity is difficult, and the impact of model loading time on QoE is underexplored. Hence, we introduce dynamic DNNs in edge scenarios, disassembling a complete DNN model into interrelated submodels for more fine-grained and flexible model caching and request routing solutions. Further, this raises the pressing issue of joint deciding request routing and sub model caching for dynamic DNNs to balance model inference precision and loading latency for QoE optimization. In this paper, we study the joint dynamic model caching and request routing problem in MEC networks, aiming to maximize user request inference precision under constraints of server resources, latency, and model loading time. To tackle this problem, we propose CoCaR, an algorithm based on linear programming and random rounding that leverages dynamic DNNs to optimize caching and routing schemes, achieving near-optimal performance. Simulation results show that the proposed CoCaR achieves significant performance improvements compared to state-of-the-art baselines.
AbstractList Mobile edge computing (MEC) can pre-cache deep neural networks (DNNs) near end-users, providing low-latency services and improving users' quality of experience (QoE). However, caching all DNN models at edge servers with limited capacity is difficult, and the impact of model loading time on QoE is underexplored. Hence, we introduce dynamic DNNs in edge scenarios, disassembling a complete DNN model into interrelated submodels for more fine-grained and flexible model caching and request routing solutions. Further, this raises the pressing issue of joint deciding request routing and sub model caching for dynamic DNNs to balance model inference precision and loading latency for QoE optimization. In this paper, we study the joint dynamic model caching and request routing problem in MEC networks, aiming to maximize user request inference precision under constraints of server resources, latency, and model loading time. To tackle this problem, we propose CoCaR, an algorithm based on linear programming and random rounding that leverages dynamic DNNs to optimize caching and routing schemes, achieving near-optimal performance. Simulation results show that the proposed CoCaR achieves significant performance improvements compared to state-of-the-art baselines.
Author Fan, Qilin
Tan, Siyu
Qiu, Shuting
Shen, Dian
Dong, Fang
Zhou, Ruiting
Author_xml – sequence: 1
  givenname: Shuting
  surname: Qiu
  fullname: Qiu, Shuting
  email: qiushuting@seu.edu.cn
  organization: Southeast University,School of Computer Science and Engineering,Nanjing,China
– sequence: 2
  givenname: Fang
  surname: Dong
  fullname: Dong, Fang
  email: fdong@seu.edu.cn
  organization: Southeast University,School of Computer Science and Engineering,Nanjing,China
– sequence: 3
  givenname: Siyu
  surname: Tan
  fullname: Tan, Siyu
  email: sytan@seu.edu.cn
  organization: Southeast University,School of Computer Science and Engineering,Nanjing,China
– sequence: 4
  givenname: Dian
  surname: Shen
  fullname: Shen, Dian
  email: dshen@seu.edu.cn
  organization: Southeast University,School of Computer Science and Engineering,Nanjing,China
– sequence: 5
  givenname: Ruiting
  surname: Zhou
  fullname: Zhou, Ruiting
  email: ruitingzhou@seu.edu.cn
  organization: Southeast University,School of Computer Science and Engineering,Nanjing,China
– sequence: 6
  givenname: Qilin
  surname: Fan
  fullname: Fan, Qilin
  email: fanqilin@cqu.edu.cn
  organization: Chongqing University,School of Big Data and Software Engineering,Chongqing,China
BookMark eNo1kE9PwjAchqvRREC-gYfG-7Bd_3vTMpSEQbLgmXTdr1ozOmXjwLc3RD09yZMn7-Edo6vUJUDonpIZpcQ8LNeLjd2UQkiuZznJxVlzzoW6QFOjjGaMCs6IoJdolEtOM6MVv0Hjvv8khGiVyxHa2s666hEXydVtTO-4CCH6CGnA81Ny--jxfL3Onl0PDS67Blpsnf84ly41uILvI_QDrrrjcHYx4bKwt-g6uLaH6R8n6G1RbO1rttq8LO3TKotU6SEDQ3xN8uAME1yyWnsg1DsZFAclmOcKTEM1ETWVDoxouDG8liawxgUuPZugu9_dCAC7r0Pcu8Np9_8C-wEoXlLO
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/INFOCOM55648.2025.11044457
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331543051
EISSN 2641-9874
EndPage 10
ExternalDocumentID 11044457
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i178t-e90cb02fa935463b8ce01ca6f74e753c47e9d1805b16ae95d4994b69f3daf46c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001540458000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 17 06:32:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-e90cb02fa935463b8ce01ca6f74e753c47e9d1805b16ae95d4994b69f3daf46c3
PageCount 10
ParticipantIDs ieee_primary_11044457
PublicationCentury 2000
PublicationDate 2025-May-19
PublicationDateYYYYMMDD 2025-05-19
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-19
  day: 19
PublicationDecade 2020
PublicationTitle Annual Joint Conference of the IEEE Computer and Communications Societies
PublicationTitleAbbrev INFOCOM
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008726
Score 2.2989
Snippet Mobile edge computing (MEC) can pre-cache deep neural networks (DNNs) near end-users, providing low-latency services and improving users' quality of experience...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Computational modeling
Heuristic algorithms
Load modeling
Loading
Pressing
Quality of experience
Routing
Servers
Simulation
Title CoCaR: Enabling Efficient Dynamic DNN-Based Model Caching and Request Routing in MEC
URI https://ieeexplore.ieee.org/document/11044457
WOSCitedRecordID wos001540458000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aXOjGV8U3Wbiddh55unTaomCnpVTpriSZGyjIVGrr95tk2qoLF-7ChYSQQE5ucs85CN2lQADAigio5hExKYmkARIJ75jGY6VFMO17feZFISYTOVyT1QMXxvUMxWfQ8s3wl1_Ozco_lbUdVBFCKN9Fu5yzmqy1PXYFT9laVTSJZfup6A3yQZ_SuoIrpa1N718-KgFGeof_nMARan4T8vBwCzXHaAeqE3TwQ0vwFI3zea5G97jryVAugrtBHMKNhzu16zzuFEX04FCrxN4B7Q3ndSElVlWJRxAAAvsKIR-bVbjfzZvopdcd54_R2jIhmiVcLCOQsdFxapXMvM69FgbixChmOQGXmBjCQZaJiKlOmAJJS5fwEM2kzUplCTPZGWpU8wrOESbaZpRznhErSaatpkZRptz1hylJeXqBmn6Bpu-1KsZ0szaXf8Sv0L7fBv_znshr1FguVnCD9szncvaxuA17-QWjaJ27
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgMhFCVaTdSNrxrfsnBLOw8YwKXjNG1sp01TTXcNMJA0MVNTW79fYNqqCxfuyE0gBBIOF-45B4D7SGOttWFIE0kRVhFGXGmMmHNMo4GQzJv2vXZpnrPxmA9WZHXPhbE9ffGZbrim_8svZmrpnsqaFqowxoRugx2CcRRUdK3NwctolKx0RcOANzt5q5_2e4RUNVwRaaz7_3JS8UDSOvznFI5A_ZuSBwcbsDkGW7o8AQc_1ARPwSidpWL4ADNHh7IRmHl5CDsefKp85-FTnqNHi1sFdB5obzCtSimhKAs41B4ioKsRcrFpCXtZWgcvrWyUttHKNAFNQ8oWSPNAySAygsdO6V4ypYNQicRQrG1qojDVvAhZQGSYCM1JYVMeLBNu4kIYnKj4DNTKWanPAcTSxIRSGmPDcSyNJEqQRNgLUCI4odEFqLsFmrxXuhiT9dpc_hG_A3vtUa876Xby5yuw77bE_cOH_BrUFvOlvgG76nMx_Zjf-n39Agn1oQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Annual+Joint+Conference+of+the+IEEE+Computer+and+Communications+Societies&rft.atitle=CoCaR%3A+Enabling+Efficient+Dynamic+DNN-Based+Model+Caching+and+Request+Routing+in+MEC&rft.au=Qiu%2C+Shuting&rft.au=Dong%2C+Fang&rft.au=Tan%2C+Siyu&rft.au=Shen%2C+Dian&rft.date=2025-05-19&rft.pub=IEEE&rft.eissn=2641-9874&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FINFOCOM55648.2025.11044457&rft.externalDocID=11044457