XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision Xlstm and Heteromodal Variational Encoder-Decoder
Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behav-ior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lac...
Saved in:
| Published in: | Proceedings (International Symposium on Biomedical Imaging) pp. 1 - 5 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
14.04.2025
|
| Subjects: | |
| ISSN: | 1945-8452 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behav-ior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lack of specific imaging techniques often com-promises the accuracy of tumor segmentation during the imaging process. To address this issue, we introduce the XLSTM-HVED model. This model integrates a hetero-modal encoder-decoder framework with the Vision XLSTM module to reconstruct missing MRI modalities. By deeply fusing spa-tial and temporal features, it enhances tumor segmentation performance. The key innovation of our approach is the Self-Attention Variational Encoder (SAVE) module, which im-proves the integration of modal features. Additionally, it op-timizes the interaction of features between segmentation and reconstruction tasks through the Squeeze-Fusion-Excitation Cross Awareness (SFECA) module. Our experiments using the BraTS 2024 dataset demonstrate that our model signif-icantly outperforms existing advanced methods in handling cases where modalities are missing. Our source code is available at https://github.com/Quanat0607/XLSTM-HVED. |
|---|---|
| AbstractList | Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behav-ior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lack of specific imaging techniques often com-promises the accuracy of tumor segmentation during the imaging process. To address this issue, we introduce the XLSTM-HVED model. This model integrates a hetero-modal encoder-decoder framework with the Vision XLSTM module to reconstruct missing MRI modalities. By deeply fusing spa-tial and temporal features, it enhances tumor segmentation performance. The key innovation of our approach is the Self-Attention Variational Encoder (SAVE) module, which im-proves the integration of modal features. Additionally, it op-timizes the interaction of features between segmentation and reconstruction tasks through the Squeeze-Fusion-Excitation Cross Awareness (SFECA) module. Our experiments using the BraTS 2024 dataset demonstrate that our model signif-icantly outperforms existing advanced methods in handling cases where modalities are missing. Our source code is available at https://github.com/Quanat0607/XLSTM-HVED. |
| Author | Ke, Yifan Jiang, Shuo Zhu, Shenghao Zhu, Zhu Wang, Yuanhan Qin, Feiwei Wang, Changmiao Chen, Xu Chen, Yifei Chen, Weihong Liu, Chang |
| Author_xml | – sequence: 1 givenname: Shenghao surname: Zhu fullname: Zhu, Shenghao organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 2 givenname: Yifei surname: Chen fullname: Chen, Yifei organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 3 givenname: Shuo surname: Jiang fullname: Jiang, Shuo organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 4 givenname: Weihong surname: Chen fullname: Chen, Weihong organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 5 givenname: Chang surname: Liu fullname: Liu, Chang organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 6 givenname: Yuanhan surname: Wang fullname: Wang, Yuanhan organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 7 givenname: Xu surname: Chen fullname: Chen, Xu organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 8 givenname: Yifan surname: Ke fullname: Ke, Yifan email: qinfeiwei@hdu.edu.cn organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 9 givenname: Feiwei surname: Qin fullname: Qin, Feiwei organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 10 givenname: Changmiao surname: Wang fullname: Wang, Changmiao organization: Shenzhen Research Institute of Big Data,Shenzhen,China – sequence: 11 givenname: Zhu surname: Zhu fullname: Zhu, Zhu email: zhuzhu_cs@zju.edu.cn organization: Zhejiang University, School of Medicine,Children's Hospital,Hangzhou,China |
| BookMark | eNo1kMtOwzAQRQ0CiVL6B0j4B1LsOI5tdvQBjdQIqS91VznJtBg1NrLTRT-CfyYEmM0dHekeaeYWXVlnAaEHSoaUEvWYLUdZSrikw5jEfNgiSWPBL9BACSUZozwmPE4vUY-qhEcy4fENGoTwQdoRScJI0kNf2_lylUezzXTyhMfehRDlrtJHPPLaWLw61c7jJRxqsI1ujLNY2wrniwwvoHQ2NP5UdjiH5t1VeB2MPeCNCT9sewxN3RVm0IB3dWfeaG86VbtPbekq8NEEurxD13t9DDD4yz5av0xX41k0f3vNxs_zyFAhmwgkiYkqSlmkxb4UKYP2bkkStZepACU4SGAi4YXSgtIiLStN2g4jkDJWScX66P7XawBg9-lNrf159_9B9g0TNGfq |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI60581.2025.10981275 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331520526 |
| EISSN | 1945-8452 |
| EndPage | 5 |
| ExternalDocumentID | 10981275 |
| Genre | orig-research |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i178t-e80209bc8b6bfc763e2758049f867e975e8e3745b9a711b6cda0e8030e633d893 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001546451000601&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:53:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-e80209bc8b6bfc763e2758049f867e975e8e3745b9a711b6cda0e8030e633d893 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10981275 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-14 |
| PublicationDateYYYYMMDD | 2025-04-14 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.2955716 |
| Snippet | Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Biological system modeling Brain modeling Brain Tumor Segmentation Brain tumors Image reconstruction Image segmentation Magnetic resonance imaging Missing Modality Monitoring Multi-task Learning Multimodal MRI Multitasking Neuroglioma Technological innovation |
| Title | XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision Xlstm and Heteromodal Variational Encoder-Decoder |
| URI | https://ieeexplore.ieee.org/document/10981275 |
| WOSCitedRecordID | wos001546451000601&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb8IwDI4G2mG77MW0t3LYNYyuj6Q78hJIFKHBEDeUJu6ERNuJx_7F_vOcUGA77LBTq6quWqet_dn-bEIedc1JXDfRzHGVZOgRcyb9RDF0xkPpSwQZiV3pHu_3xWQSDgqyuuXCAIAtPoOq2bW5fJ2rtQmV4RceCtOQvERKnPMNWWsXUEFb6CE2L2q48NSn7rDeNVk_AwOf_epW-tccFWtG2if_vIFTUtkT8uhgZ2rOyAFk5-T4Ry_BC_I16Q1HEeuMW80X2jC2j0W5lnNaN0Mg6Gid5gs6hPe0IBtlVGaaRq9dahDovo8sjexMaWprCejYUs_pZL5cpVagY8pn8tReeYw4u4gl0lZmyPEL1gS7rZC3dmvU6LBi1gKbOVysGAj0G8NYiTiIE4U_HcDHFAgfEhFwCLkPAlzu-XEouePEgdKyhjJuDQLX1ej0XJJylmdwRajv6dh0RZNSoYDJ03kxgOspmQjFhb4mFaPZ6cemncZ0q9SbP47fkiOzfiaF43h3pIz6gHtyqD5Xs-Xiwb4E31K4s1o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oNVEvvmp8uwevW0t5LR77CkRoGotNb82yO5gmBUwf_gv_s7tb2urBgycIYQjMAjPfzHwzCD2KupGaZiqIYXJGpEfsEmannEhn3GM2kyAj1Ssdur0eHY28fklW11wYANDFZ1BTuzqXLwq-VKEy-YV7VDUk30V7tmU1jBVdaxNSkdbQkui8rOKSJz8Fg2ag8n4KCDbs2lr-1yQVbUi6x_-8hRNU3VLycH9jbE7RDuRn6OhHN8Fz9DUKB3FE_GGn_YxbyvqRqBBsiptqDASOl1kxwwN4z0q6UY5ZLnD0GmCFQbedZHGkp0pjXU2Ah5p8jkfT-SLTAr4qoCkyfeWhRNplNBF3ckWPn5E26G0VvXU7ccsn5bQFMjFcuiBApefoJZwmTpJy-dsB-ZhUAoiUOi54rg0UTNeyE4-5hpE4XLC6lDHr4JimkG7PBarkRQ6XCNuWSFRfNMa4FFCZOisBMC3OUspdKq5QVWl2_LFqqDFeK_X6j-MP6MCPo3AcBr2XG3So1lIldAzrFlWkbuAO7fPPxWQ-u9cvxDfRoLah |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=XLSTM-HVED%3A+Cross-Modal+Brain+Tumor+Segmentation+and+MRI+Reconstruction+Method+Using+Vision+Xlstm+and+Heteromodal+Variational+Encoder-Decoder&rft.au=Zhu%2C+Shenghao&rft.au=Chen%2C+Yifei&rft.au=Jiang%2C+Shuo&rft.au=Chen%2C+Weihong&rft.date=2025-04-14&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI60581.2025.10981275&rft.externalDocID=10981275 |