Imagined Speech State Classification for Robust Brain-Computer Interface

This study examines the effectiveness of traditional machine learning classifiers versus deep learning models for detecting the imagined speech using electroencephalogram data. Specifically, we evaluated conventional machine learning techniques such as CSP-SVM and LDA-SVM classifiers alongside deep...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The ... International Winter Conference on Brain-Computer Interface s. 1 - 4
Hlavní autoři: Ko, Byung-Kwan, Kim, Jun-Young, Lee, Seo-Hyun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 24.02.2025
Témata:
ISSN:2572-7672
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study examines the effectiveness of traditional machine learning classifiers versus deep learning models for detecting the imagined speech using electroencephalogram data. Specifically, we evaluated conventional machine learning techniques such as CSP-SVM and LDA-SVM classifiers alongside deep learning architectures such as EEGNet, ShallowConvNet, and DeepConvNet. Machine learning classifiers exhibited significantly lower precision and recall, indicating limited feature extraction capabilities and poor generalization between imagined speech and idle states. In contrast, deep learning models, particularly EEGNet, achieved the highest accuracy of 0.7080 and an F1 score of 0.6718, demonstrating their enhanced ability in automatic feature extraction and representation learning, essential for capturing complex neurophysiological patterns. These findings highlight the limitations of conventional machine learning approaches in brain-computer interface (BCI) applications and advocate for adopting deep learning methodologies to achieve more precise and reliable classification of detecting imagined speech. This foundational research contributes to the development of imagined speech-based BCI systems.
AbstractList This study examines the effectiveness of traditional machine learning classifiers versus deep learning models for detecting the imagined speech using electroencephalogram data. Specifically, we evaluated conventional machine learning techniques such as CSP-SVM and LDA-SVM classifiers alongside deep learning architectures such as EEGNet, ShallowConvNet, and DeepConvNet. Machine learning classifiers exhibited significantly lower precision and recall, indicating limited feature extraction capabilities and poor generalization between imagined speech and idle states. In contrast, deep learning models, particularly EEGNet, achieved the highest accuracy of 0.7080 and an F1 score of 0.6718, demonstrating their enhanced ability in automatic feature extraction and representation learning, essential for capturing complex neurophysiological patterns. These findings highlight the limitations of conventional machine learning approaches in brain-computer interface (BCI) applications and advocate for adopting deep learning methodologies to achieve more precise and reliable classification of detecting imagined speech. This foundational research contributes to the development of imagined speech-based BCI systems.
Author Kim, Jun-Young
Lee, Seo-Hyun
Ko, Byung-Kwan
Author_xml – sequence: 1
  givenname: Byung-Kwan
  surname: Ko
  fullname: Ko, Byung-Kwan
  email: leaderbk525@korea.ac.kr
  organization: Korea University,Dept. of Artificial Intelligence,Seoul,Republic of Korea
– sequence: 2
  givenname: Jun-Young
  surname: Kim
  fullname: Kim, Jun-Young
  email: j_y_kim@korea.ac.kr
  organization: Korea University,Dept. of Artificial Intelligence,Seoul,Republic of Korea
– sequence: 3
  givenname: Seo-Hyun
  surname: Lee
  fullname: Lee, Seo-Hyun
  email: seohyunlee@korea.ac.kr
  organization: Korea University,Dept. of Brain and Cognitive Engineering,Seoul,Republic of Korea
BookMark eNo1j8tKAzEYRqMoWOu8gUheYGquk2RpB7UDBcHquvyT_NFI58JkuvDtLaib78BZHPiuyUU_9EjIHWcrzpm7X9dNpZm1K8GEXp2M5Mq5M1I446yUXAvuhDsnC6GNKE1lxBUpcv5ijElunWNqQTZNBx-px0B3I6L_pLsZZqT1AXJOMXmY09DTOEz0dWiPeabrCVJf1kM3HmecaNOfNoLHG3IZ4ZCx-OOSvD89vtWbcvvy3NQP2zJxY-cyBB5DROsBgwapKqWU9NIHFaP2rXIWIrRQeSNY9BqtAVdJ2Qa0TGsHckluf7sJEffjlDqYvvf_5-UP8VRRUw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BCI65088.2025.10931499
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 9798331521929
EISSN 2572-7672
EndPage 4
ExternalDocumentID 10931499
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-dd1fdfe8caed5a3464443c3cd4ff5cb498afaba6c720fc5e87a9633bde80559a3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471781800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Apr 02 05:44:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-dd1fdfe8caed5a3464443c3cd4ff5cb498afaba6c720fc5e87a9633bde80559a3
PageCount 4
ParticipantIDs ieee_primary_10931499
PublicationCentury 2000
PublicationDate 2025-Feb.-24
PublicationDateYYYYMMDD 2025-02-24
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-24
  day: 24
PublicationDecade 2020
PublicationTitle The ... International Winter Conference on Brain-Computer Interface
PublicationTitleAbbrev BCI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189904
Score 1.9001707
Snippet This study examines the effectiveness of traditional machine learning classifiers versus deep learning models for detecting the imagined speech using...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Brain modeling
brain-computer interface
Brain-computer interfaces
Data models
Deep learning
Electroencephalography
Feature extraction
imagined speech
machine learning
Reliability
signal processing
Speech enhancement
Training
Title Imagined Speech State Classification for Robust Brain-Computer Interface
URI https://ieeexplore.ieee.org/document/10931499
WOSCitedRecordID wos001471781800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA5VeuipDy19k0PpLbqbZE08VqkoFJG-8CbZzIR66Cq6Fvrvm8RH6aGH3pZll8BMNvlm9vvyEXLLrTGoLTAXqI3ScMeM5RlzXIIULZlCbF28ParhUI_H7dFGrB61MIgYyWfYCJfxXz7M7Cq0yprh6COP6NsVUlFKrcVau4aKn5x-ZZUbFbB_tNnpDiL-8FUgzxrbl3_ZqMRdpHf4z_GPSP1Hj0dHu53mmOxhcUJq94UvmD--6B2NNM7YH6-R_uAjGA8h0Oc5on2nEU7SaH4ZaEExE9RDVfo0y1fLknaCSQTbujvQ2CJ0xmKdvPYeXrp9trFLYNNU6ZIBpA6cD7xByIyQHulIYYUF6Vxmc9nWxpnctKziibMZamX81ydyQJ34usKIU1ItZgWeEZqCL-OsM1xpkMYFkl-CuUoQPH5SIM5JPURnMl-fiDHZBubij_uX5CDkIErB5RWplosVXpN9-1lOl4ubmMdvJNSgCw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0omujJDzB-uwfjrdBut7QchUggIiGKhhvZ7swGDhQCxcR_7-7yYTx48NY0bbKZ2e6-mb63D-CeKykpUehpS20UkmtPKh55mgsUYVUE6FoXH524200Gg1pvLVZ3WhgicuQzKttL9y8fp2ppW2UVe_SRQfS1XdiLhODBSq61bamY6WnWVrHWAZuHK_VG2yEQUwfyqLx5_ZeRittHmkf_HMExlH4Ueay33WtOYIeyUyg-ZqZknnyxB-aInK5DXoRWe2KthwjZ24xIjZgDlMzZX1pikMsFM2CVvU7T5SJndWsT4W38HZhrEmqpqATvzad-o-WtDRO8cRAnuYcYaNQm9JIwkqEwWEeEKlQotI5UKmqJ1DKVVRVzX6uIklia7y9MkRLfVBYyPINCNs3oHFiAppBTWvI4QSG1pfn5lMY-oUFQMYYXULLRGc5WZ2IMN4G5_OP-HRy0-i-dYafdfb6CQ5sPJwwX11DI50u6gX31mY8X81uX02-mtKNS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+International+Winter+Conference+on+Brain-Computer+Interface&rft.atitle=Imagined+Speech+State+Classification+for+Robust+Brain-Computer+Interface&rft.au=Ko%2C+Byung-Kwan&rft.au=Kim%2C+Jun-Young&rft.au=Lee%2C+Seo-Hyun&rft.date=2025-02-24&rft.pub=IEEE&rft.eissn=2572-7672&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FBCI65088.2025.10931499&rft.externalDocID=10931499