Dataset Refinement for Improving the Generalization Ability of the EEG Decoding Model
Electroencephalography (EEG) is a generally used neuroimaging approach in brain-computer interfaces due to its non-invasive characteristics and convenience, making it an effective tool for understanding human intentions. Therefore, recent research has focused on decoding human intentions from EEG si...
Saved in:
| Published in: | The ... International Winter Conference on Brain-Computer Interface pp. 1 - 4 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
24.02.2025
|
| Subjects: | |
| ISSN: | 2572-7672 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electroencephalography (EEG) is a generally used neuroimaging approach in brain-computer interfaces due to its non-invasive characteristics and convenience, making it an effective tool for understanding human intentions. Therefore, recent research has focused on decoding human intentions from EEG signals utilizing deep learning methods. However, since EEG signals are highly susceptible to noise during acquisition, there is a high possibility of the existence of noisy data in the dataset. Although pioneer studies have generally assumed that the dataset is well-curated, this assumption is not always met in the EEG dataset. In this paper, we addressed this issue by designing a dataset refinement algorithm that can eliminate noisy data based on metrics evaluating data influence during the training process. We applied the proposed algorithm to two motor imagery EEG public datasets and three different models to perform dataset refinement. The results indicated that retraining the model with the refined dataset consistently led to better generalization performance compared to using the original dataset. Hence, we demonstrated that removing noisy data from the training dataset alone can effectively improve the generalization performance of deep learning models in the EEG domain. |
|---|---|
| AbstractList | Electroencephalography (EEG) is a generally used neuroimaging approach in brain-computer interfaces due to its non-invasive characteristics and convenience, making it an effective tool for understanding human intentions. Therefore, recent research has focused on decoding human intentions from EEG signals utilizing deep learning methods. However, since EEG signals are highly susceptible to noise during acquisition, there is a high possibility of the existence of noisy data in the dataset. Although pioneer studies have generally assumed that the dataset is well-curated, this assumption is not always met in the EEG dataset. In this paper, we addressed this issue by designing a dataset refinement algorithm that can eliminate noisy data based on metrics evaluating data influence during the training process. We applied the proposed algorithm to two motor imagery EEG public datasets and three different models to perform dataset refinement. The results indicated that retraining the model with the refined dataset consistently led to better generalization performance compared to using the original dataset. Hence, we demonstrated that removing noisy data from the training dataset alone can effectively improve the generalization performance of deep learning models in the EEG domain. |
| Author | Lee, Dae-Hyeok Kim, Sung-Jin Han, Hyeon-Taek |
| Author_xml | – sequence: 1 givenname: Sung-Jin surname: Kim fullname: Kim, Sung-Jin email: s_j_kim@korea.ac.kr organization: Korea University,Dept. of Artificial Intelligence,Seoul,Republic of Korea – sequence: 2 givenname: Dae-Hyeok surname: Lee fullname: Lee, Dae-Hyeok email: lee_dh@korea.ac.kr organization: Korea University,Dept. of Brain and Cognitive Engineering,Seoul,Republic of Korea – sequence: 3 givenname: Hyeon-Taek surname: Han fullname: Han, Hyeon-Taek email: ht_han@korea.ac.kr organization: Korea University,Dept. of Artificial Intelligence,Seoul,Republic of Korea |
| BookMark | eNo1kM1KAzEUhaMoWGvfQCQvMDXJTSbJsra1DlQEseuSmbnRyDQpM0GoT19_VwfOd_gW55KcxRSRkBvOppwze3s3r0rFjJkKJtT0qwEOpTwhE6utAeBKcCvsKRkJpUWhSy0uyGQY3hljwI21TI7IZuGyGzDTZ_Qh4g5jpj71tNrt-_QR4ivNb0hXGLF3Xfh0OaRIZ3XoQj7Q5H_ocrmiC2xS-z1_TC12V-Tcu27AyV-OyeZ--TJ_KNZPq2o-WxeBa5OL1jpZgm5qBMWUqaWz4KBBVioQnHMra48KTQMtaMYah954b72SQknpWxiT619vQMTtvg871x-2_0_AEQ5MVCs |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BCI65088.2025.10931364 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISBN | 9798331521929 |
| EISSN | 2572-7672 |
| EndPage | 4 |
| ExternalDocumentID | 10931364 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Acquisition Program Administration (DAPA) grantid: 912911601 funderid: 10.13039/501100003626 – fundername: Agency For Defense Development (ADD) funderid: 10.13039/501100005073 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i178t-d9a4637cbe35058b4a93a3ce0653211194bfe5e8c3d3700caef8ff9f542544fd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471781800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Apr 02 05:44:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-d9a4637cbe35058b4a93a3ce0653211194bfe5e8c3d3700caef8ff9f542544fd3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10931364 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Feb.-24 |
| PublicationDateYYYYMMDD | 2025-02-24 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb.-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | The ... International Winter Conference on Brain-Computer Interface |
| PublicationTitleAbbrev | BCI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003189904 |
| Score | 1.9001777 |
| Snippet | Electroencephalography (EEG) is a generally used neuroimaging approach in brain-computer interfaces due to its non-invasive characteristics and convenience,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Brain modeling Brain-computer interfaces dataset refinement Decoding Deep learning electroencephalogram Electroencephalography motor imagery Motors Neuroimaging Noise Noise measurement Training |
| Title | Dataset Refinement for Improving the Generalization Ability of the EEG Decoding Model |
| URI | https://ieeexplore.ieee.org/document/10931364 |
| WOSCitedRecordID | wos001471781800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4I8eDJBxjf2YPxVqDd7e72iICPxBBixHAj293ZhESLwWLCv3d2KRgPHrw1fW0y03a-bzrfDCHXKk-17Qj0AAgecQEsUqlLIoevkuAizm2Yn_L6JIdDNZlko0qsHrQwABCKz6DlN8O_fDs3S58qa_vWRzETvEZqUsq1WGubUMGHE7-svFIB46nt295jwB_IApO0tbn41xiVEEXu9v-5_gFp_ujx6GgbaQ7JDhRHpNEtkDC_r-gNDWWcIT_eIOO-LjEylfQZHCJIf0eKwJRuswcUIR-tuk1XIkzaDSWyKzp34ehgcE_7yEv9atRPS3trkvHd4KX3EFWzE6JZLFUZ2UxzwaTJgSHGUTnXGdPMgG9Fi5wvznjuIAVlmGWy0zEanHIucyn3PcucZcekXswLOCE007FVCYDU2nGr0cwGMZ7C2A7IXRJ-SpreVNOPdXuM6cZKZ3_sPyd73iFBF84vSL1cLOGS7Jqvcva5uApO_QYf8aJO |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4omujJBxjf7sF4K9Ludrs9Ig8hIiEGDDey7c4mJFoMFhP-vbNLwXjw4K3pOzNt5_um880QciuTUOmaQA-A4B4XwDwZmsAz-CoJLvxEu_kpr72o35fjcTwoxOpOCwMArvgMqnbR_cvXs3RhU2X3tvWRzwTfJjsh54G_kmttUir4eOK3lRc6YNz5_qHRdQgEeWAQVteH_xqk4uJI--Cfd3BIKj-KPDrYxJojsgXZMSnXM6TM70t6R10hp8uQl8moqXKMTTl9AYMY0p6RIjSlm_wBRdBHi37ThQyT1l2R7JLOjNvaaj3SJjJTezVq56W9Vcio3Ro2Ol4xPcGb-pHMPR0rLliUJsAQ5ciEq5gploJtRousz495YiAEmTLNolotVWCkMbEJue1aZjQ7IaVslsEpobHytQwAIqUM1wrNnCLKkxjdAdlLwM9IxZpq8rFqkDFZW-n8j_U3ZK8zfO5Net3-0wXZt85xKnF-SUr5fAFXZDf9yqef82vn4G_A9qWV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+International+Winter+Conference+on+Brain-Computer+Interface&rft.atitle=Dataset+Refinement+for+Improving+the+Generalization+Ability+of+the+EEG+Decoding+Model&rft.au=Kim%2C+Sung-Jin&rft.au=Lee%2C+Dae-Hyeok&rft.au=Han%2C+Hyeon-Taek&rft.date=2025-02-24&rft.pub=IEEE&rft.eissn=2572-7672&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FBCI65088.2025.10931364&rft.externalDocID=10931364 |