Enhancing Rheumatoid Arthritis Detection using Bio-Inspired Feature Selection of GOA Model with DBN Classification

Rheumatoid arthritis (RA) is a debilitating autoimmune disease where early and precise diagnosis is crucial for effective intervention. This study introduces an advanced GOAT Optimisation Algorithm (GOA) for feature selection combined with a Deep Belief Network (DBN) to significantly improve RA dete...

Full description

Saved in:
Bibliographic Details
Published in:2025 International Conference on Intelligent Computing and Knowledge Extraction (ICICKE) pp. 1 - 8
Main Authors: L K, Jayashree, Kumar. J, Santosh
Format: Conference Proceeding
Language:English
Published: IEEE 06.06.2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rheumatoid arthritis (RA) is a debilitating autoimmune disease where early and precise diagnosis is crucial for effective intervention. This study introduces an advanced GOAT Optimisation Algorithm (GOA) for feature selection combined with a Deep Belief Network (DBN) to significantly improve RA detection accuracy. Unlike conventional methods, GOA incorporates adaptive mechanisms for enhanced exploration-exploitation balance, enabling more efficient selection of discriminative biomarkers from high-dimensional clinical data. The optimised features are then classified using a DBN with hierarchical feature learning capabilities. Evaluated on a comprehensive RA dataset, our GOAT-DBN framework achieves 98.7% accuracy, 98.2% sensitivity, and 99.1% specificity, surpassing existing approaches like PSO-ANN (96.7%) and standard GOA-DBN (98.2%). Notably, GOAT reduces feature dimensionality by 72% while improving diagnostic reliability, demonstrating its superiority in handling complex medical data patterns. The proposed system not only provides a clinically viable tool for early RA diagnosis but also establishes GOAT as a superior bio-inspired optimiser for medical feature selection problems.
AbstractList Rheumatoid arthritis (RA) is a debilitating autoimmune disease where early and precise diagnosis is crucial for effective intervention. This study introduces an advanced GOAT Optimisation Algorithm (GOA) for feature selection combined with a Deep Belief Network (DBN) to significantly improve RA detection accuracy. Unlike conventional methods, GOA incorporates adaptive mechanisms for enhanced exploration-exploitation balance, enabling more efficient selection of discriminative biomarkers from high-dimensional clinical data. The optimised features are then classified using a DBN with hierarchical feature learning capabilities. Evaluated on a comprehensive RA dataset, our GOAT-DBN framework achieves 98.7% accuracy, 98.2% sensitivity, and 99.1% specificity, surpassing existing approaches like PSO-ANN (96.7%) and standard GOA-DBN (98.2%). Notably, GOAT reduces feature dimensionality by 72% while improving diagnostic reliability, demonstrating its superiority in handling complex medical data patterns. The proposed system not only provides a clinically viable tool for early RA diagnosis but also establishes GOAT as a superior bio-inspired optimiser for medical feature selection problems.
Author Kumar. J, Santosh
L K, Jayashree
Author_xml – sequence: 1
  givenname: Jayashree
  surname: L K
  fullname: L K, Jayashree
  email: jayashreelk@kssem.edu.in
  organization: Dayananda Sagar University Harohalli,India
– sequence: 2
  givenname: Santosh
  surname: Kumar. J
  fullname: Kumar. J, Santosh
  email: santoshkumar-ct@dsu.edu.in
  organization: Dayananda Sagar University,Department of Computer Science and Technology,Bengaluru,India
BookMark eNo10MtOwzAUBFAjwQJK_4CF-YAUO05ie5mmDyIKlXisK8e-IVdKncpxhfh7qCirkUZHs5gbcukHD4TcczbjnOmHuqqrp2WRCy5nKUvz35aLIhXsgky11EoInotCcXlNwtJ3xlv0n_S1g-PexAEdLUPsAkYc6QIi2IiDp8fxhOY4JLUfDxjA0RWYeAxA36A_o6Gl621JnwcHPf3C2NHF_IVWvRlHbNGaE7olV63pR5iec0I-Vsv36jHZbNd1VW4S5FLFxHEtVOOsAcuFko1ulZOGqywTTgmZFZmzuZRp0eQmNYwJYE5rZwtrpdWtFRNy97eLALA7BNyb8L37v0L8AC_0Wp4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICKE65317.2025.11136230
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331536817
EndPage 8
ExternalDocumentID 11136230
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i178t-d1938bdcaec1387b9f8d7a18443d837464dc57726b5a2a003e0d99dc6cc7c9fc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001575314000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Oct 01 07:05:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-d1938bdcaec1387b9f8d7a18443d837464dc57726b5a2a003e0d99dc6cc7c9fc3
PageCount 8
ParticipantIDs ieee_primary_11136230
PublicationCentury 2000
PublicationDate 2025-June-6
PublicationDateYYYYMMDD 2025-06-06
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-6
  day: 06
PublicationDecade 2020
PublicationTitle 2025 International Conference on Intelligent Computing and Knowledge Extraction (ICICKE)
PublicationTitleAbbrev ICICKE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9109029
Snippet Rheumatoid arthritis (RA) is a debilitating autoimmune disease where early and precise diagnosis is crucial for effective intervention. This study introduces...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Arthritis
autoimmune disease diagnosis
Biological system modeling
biomarker selection
Biomarkers
Classification algorithms
deep belief network
Feature extraction
GOAT optimisation algorithm (GOA)
intelligent healthcare
Medical diagnostic imaging
Optimization
rheumatoid arthritis
Sensitivity
Title Enhancing Rheumatoid Arthritis Detection using Bio-Inspired Feature Selection of GOA Model with DBN Classification
URI https://ieeexplore.ieee.org/document/11136230
WOSCitedRecordID wos001575314000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRDypWPFNBK_pYx_J5tinFqUWH9Bb2SSzbaFkZdn19ztJW8WDB29hCSzMJJn5km_mI-SOSxNpHnKGuSxnUWZiJtO2YnErDURmFB7L3tNPYjxOplM52RSr-1oYAPDkM2i4oX_LN7mu3FVZ08miY7hGhL4rBF8Xa-2T203fzOaoN-o9DjiuKoHAL4gb2_m_lFN84Bge_vOXR6T-U4JHJ9_B5ZjsgD0hxcAuXH8MO6cvC6gw2cyXhnaKcuFbE9E-lJ5ZZamjs89pd5mzkXVv6WCoS_aqAuirV75xk_KM3j93qJNDW1F3IUv73TH1MpmOQOR9Vifvw8Fb74FtRBPYsi2SkhnMyBJldAq6HSZCySwxIkUcF4UGwWjEI6NjTKm5itMgxT0NLSOl0VxroWWmw1NSs7mFM0JT3O9KozdVC6JQyQTiADR3ECiLtODnpO4MNvtY98WYbW118cf3S3Lg3OKJVvyK1Mqigmuypz_RQsWN9-YXxNmjRw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yRT2pOPG3Ebxm69o0aY776cpmHTpht9Emr9tAWimtf79JtikePHgroSXwvqTvfcl770PogQlFJfMY0bEsIzRVPhFxKyG-E7s8VYn-LVukxzyKgtlMTDbF6rYWBgBs8hk0zKO9y1e5rMxRWdPIomt3rRn6rk-p66zLtfbR_aZzZjPsht1Rn-l1xTX1c_3G9otf2inWdQyO_jnpMar_FOHhybd7OUE7kJ2iop8tTYeMbIFfllDpcDNfKdwuyqVtToR7UNrcqgybhPYF7qxyEmbmNh0UNuFeVQB-tdo35qU8xY_PbWwE0d6xOZLFvU6ErVCmSSGyqNXR26A_7Q7JRjaBrFo8KInSMVmQKBmDbHkBT0QaKB5rJkc9pekoZVRJXwfVLPFjN9a7GhwlhJJMSi5FKr0zVMvyDM4RjvWOT6TGM3GAeokIwHdBMkOCUio5u0B1Y7D5x7ozxnxrq8s_xu_QwXD6NJ6Pw2h0hQ4NRDbtil2jWllUcIP25Ke2VnFrkf0Cbyymjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Intelligent+Computing+and+Knowledge+Extraction+%28ICICKE%29&rft.atitle=Enhancing+Rheumatoid+Arthritis+Detection+using+Bio-Inspired+Feature+Selection+of+GOA+Model+with+DBN+Classification&rft.au=L+K%2C+Jayashree&rft.au=Kumar.+J%2C+Santosh&rft.date=2025-06-06&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICICKE65317.2025.11136230&rft.externalDocID=11136230