High-Throughput SAT Sampling

In this work, we present a novel technique for GPU-accelerated Boolean satisfiability (SAT) sampling. Unlike conventional sampling algorithms that directly operate on conjunctive normal form (CNF), our method transforms the logical constraints of SAT problems by factoring their CNF representations i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings - Design, Automation, and Test in Europe Conference and Exhibition S. 1 - 7
Hauptverfasser: Ardakani, Arash, Kang, Minwoo, He, Kevin, Huang, Qijing, Wawrzynek, John
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: EDAA 31.03.2025
Schlagworte:
ISSN:1558-1101
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, we present a novel technique for GPU-accelerated Boolean satisfiability (SAT) sampling. Unlike conventional sampling algorithms that directly operate on conjunctive normal form (CNF), our method transforms the logical constraints of SAT problems by factoring their CNF representations into simplified multilevel, multi-output Boolean functions. It then leverages gradient-based optimization to guide the search for a diverse set of valid solutions. Our method operates directly on the circuit structure of refactored SAT instances, reinterpreting the SAT problem as a supervised multi-output regression task. This differentiable technique enables independent bit-wise operations on each tensor element, allowing parallel execution of learning processes. As a result, we achieve GPU-accelerated sampling with significant runtime improvements ranging from 33.6x to 523.6x over state-of-the-art heuristic samplers. We demonstrate the superior performance of our sampling method through an extensive evaluation on 60 instances from a public domain benchmark suite utilized in previous studies.
AbstractList In this work, we present a novel technique for GPU-accelerated Boolean satisfiability (SAT) sampling. Unlike conventional sampling algorithms that directly operate on conjunctive normal form (CNF), our method transforms the logical constraints of SAT problems by factoring their CNF representations into simplified multilevel, multi-output Boolean functions. It then leverages gradient-based optimization to guide the search for a diverse set of valid solutions. Our method operates directly on the circuit structure of refactored SAT instances, reinterpreting the SAT problem as a supervised multi-output regression task. This differentiable technique enables independent bit-wise operations on each tensor element, allowing parallel execution of learning processes. As a result, we achieve GPU-accelerated sampling with significant runtime improvements ranging from 33.6x to 523.6x over state-of-the-art heuristic samplers. We demonstrate the superior performance of our sampling method through an extensive evaluation on 60 instances from a public domain benchmark suite utilized in previous studies.
Author Wawrzynek, John
He, Kevin
Ardakani, Arash
Kang, Minwoo
Huang, Qijing
Author_xml – sequence: 1
  givenname: Arash
  surname: Ardakani
  fullname: Ardakani, Arash
  email: arash.ardakani@berkeley.edu
  organization: University of California,Berkeley
– sequence: 2
  givenname: Minwoo
  surname: Kang
  fullname: Kang, Minwoo
  email: minwoo_kang@berkeley.edu
  organization: University of California,Berkeley
– sequence: 3
  givenname: Kevin
  surname: He
  fullname: He, Kevin
  email: kevinjhe@berkeley.edu
  organization: University of California,Berkeley
– sequence: 4
  givenname: Qijing
  surname: Huang
  fullname: Huang, Qijing
  email: jennyhuang@nvidia.com
  organization: NVIDIA
– sequence: 5
  givenname: John
  surname: Wawrzynek
  fullname: Wawrzynek, John
  email: johnw@berkeley.edu
  organization: University of California,Berkeley
BookMark eNo1j71OwzAYAA0qEk3LG3TICzj4-_wTe4xKaZEqMTTMle3YiVGbRkk78PYgAdNJN5x0GZn1lz4QkgMrkBswzy9VvVFCoS6QoSyAGcNR6DuScaNRlQJYeU_mIKWmAAweSTZNn4wxydHMyWqX2o7W3Xi5td1wu-aHqs4P9jycUt8uyUO0pyk8_XFBPl439XpH9-_bt3W1pwlKfaXeohVGCsdt451TDpy0SkeIsok_VjsujWWCe2xsaaMulUHwLDp0zkPgC7L67aYQwnEY09mOX8f_Ff4NPJw_jg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/DATE64628.2025.10993248
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3982674107
9783982674100
EISSN 1558-1101
EndPage 7
ExternalDocumentID 10993248
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IPLJI
KZ1
LMP
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-ca2a4954b3adcbb6b1b5a68f1f5df4b38b359a043c2da7af876921c0fb2bbc1e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506972600388&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:55:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-ca2a4954b3adcbb6b1b5a68f1f5df4b38b359a043c2da7af876921c0fb2bbc1e3
PageCount 7
ParticipantIDs ieee_primary_10993248
PublicationCentury 2000
PublicationDate 2025-March-31
PublicationDateYYYYMMDD 2025-03-31
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-31
  day: 31
PublicationDecade 2020
PublicationTitle Proceedings - Design, Automation, and Test in Europe Conference and Exhibition
PublicationTitleAbbrev DATE
PublicationYear 2025
Publisher EDAA
Publisher_xml – name: EDAA
SSID ssj0005329
Score 2.2871053
Snippet In this work, we present a novel technique for GPU-accelerated Boolean satisfiability (SAT) sampling. Unlike conventional sampling algorithms that directly...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Boolean functions
Boolean Satisfiability
Distance measurement
Gradient Descent
Logic
Multi-level Circuits
Optimization
Performance gain
Runtime
Sampling methods
Tensors
Testing
Transforms
Verification
Title High-Throughput SAT Sampling
URI https://ieeexplore.ieee.org/document/10993248
WOSCitedRecordID wos001506972600388&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0I8aAXFDF-oNmD1wXa0nZ7JArxYAgJa8KNdPphuCwGwd9vu8uKHjx4aybTNG3TTtt5rw_gwXJlCZeYSvQ6HVoUqRKchwnhWkbVNKNKovCLnE6zxULN9mT1kgvjnCvBZ64Xi2Uu367NLj6V9WMWJxwAsgY0pBQVWeuA52BUVVAdyhRR_adRPhaReRkugZT36rq_VFTKIDJp_bP5M-gc6HjJ7DvQnMORK9rQqvUYkv3ybMPpj88FL6AbIRxpXunwBM9kPsqTuY4I8uKtA6-Tcf74nO61ENIVkdk2NZrqcJcZItPWIAokyLXIPPHc-mDNkHGlB0NmqNVS-7DJKUrMwCNFNMSxS2gW68JdQSK9yZB4hSychcJYoRZCBpeBNSQzjlxDJ_Z9-V59d7Gsu33zh_0WTuIIV0S9LjS3m527g2PzuV19bO7LSfoCnmmR4A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omqgXFDE-UPfgdYHu0m17JArBiISENeFGOn0YLgtB8Pfb7i6iBw_emsk06SPttJ3v6wfwoKnQhDIMGVoZdjQmoUgodRNCJfOqaUrkROEhG434dCrGJVk958IYY3LwmWn6Yp7L1wu18U9lLZ_FcQcAvg8HXjqrpGvtEB1xJAqwThQLIlpP3bSXeO6luwZGtLmt_UtHJQ8j_eo_G3AK9R0hLxh_h5oz2DNZDapbRYagXKA1OPnxveA5NDyII0wLJR7nGUy6aTCRHkOevdfhrd9LHwdhqYYQzgnj61DJSLrbTAdjqRViggSpTLgllmrrrBxjKmS7E6tISyat2-ZERFTbYoSoiIkvoJItMnMJAbOKI7ECY3cacmOFMkmYc2lrRbgy5Arqvu-zZfHhxWzb7es_7PdwNEhfh7Ph8-jlBo79aBe0vQZU1quNuYVD9bmef6zu8gn7Amv9lSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Design%2C+Automation%2C+and+Test+in+Europe+Conference+and+Exhibition&rft.atitle=High-Throughput+SAT+Sampling&rft.au=Ardakani%2C+Arash&rft.au=Kang%2C+Minwoo&rft.au=He%2C+Kevin&rft.au=Huang%2C+Qijing&rft.date=2025-03-31&rft.pub=EDAA&rft.eissn=1558-1101&rft.spage=1&rft.epage=7&rft_id=info:doi/10.23919%2FDATE64628.2025.10993248&rft.externalDocID=10993248