Joint Video Frame Scheduling and Resource Allocation for Device-Edge Collaborative Video Intelligent Analytics

With the development of 6G immersive communication, video intelligent analytics has garnered significant attention. Video intelligent analytics has diverse requirements in different immersive service scenarios, especially in accuracy and latency. However, as resource-limited terminal devices struggl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC pp. 1 - 6
Main Authors: Li, Jiayi, Chi, Xiaoyu, Wang, Hui, Su, Yi, Han, Shujun, Xu, Xiaodong
Format: Conference Proceeding
Language:English
Published: IEEE 24.03.2025
Subjects:
ISSN:1558-2612
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the development of 6G immersive communication, video intelligent analytics has garnered significant attention. Video intelligent analytics has diverse requirements in different immersive service scenarios, especially in accuracy and latency. However, as resource-limited terminal devices struggle to accom-plish high-accuracy video intelligent analytics tasks, video frames have to be offloaded to edge nodes with sufficient computational and cache resources for further processing. Therefore, in this paper, we consider device-edge collaboration video intelligent an-alytics tasks to improve trade-off performance between accuracy and latency. Specifically, we propose a joint optimization scheme for video frame scheduling, adaptive video frame compression and Machine Learning (ML) model caching to maximize the minimum of utility among all users. We divide the joint optimization problem into two sub-problems and use convex optimization to solve the adaptive frame compression optimization problem. Furthermore, to avoid the curse of dimensionality, we design an expert-assisted proximal policy optimization (EPPO)-based joint video frame scheduling and resource allocation algorithm. Simulation results demonstrate the superiority of the proposed scheme in improving video intelligent analytics performance.
AbstractList With the development of 6G immersive communication, video intelligent analytics has garnered significant attention. Video intelligent analytics has diverse requirements in different immersive service scenarios, especially in accuracy and latency. However, as resource-limited terminal devices struggle to accom-plish high-accuracy video intelligent analytics tasks, video frames have to be offloaded to edge nodes with sufficient computational and cache resources for further processing. Therefore, in this paper, we consider device-edge collaboration video intelligent an-alytics tasks to improve trade-off performance between accuracy and latency. Specifically, we propose a joint optimization scheme for video frame scheduling, adaptive video frame compression and Machine Learning (ML) model caching to maximize the minimum of utility among all users. We divide the joint optimization problem into two sub-problems and use convex optimization to solve the adaptive frame compression optimization problem. Furthermore, to avoid the curse of dimensionality, we design an expert-assisted proximal policy optimization (EPPO)-based joint video frame scheduling and resource allocation algorithm. Simulation results demonstrate the superiority of the proposed scheme in improving video intelligent analytics performance.
Author Su, Yi
Li, Jiayi
Wang, Hui
Chi, Xiaoyu
Xu, Xiaodong
Han, Shujun
Author_xml – sequence: 1
  givenname: Jiayi
  surname: Li
  fullname: Li, Jiayi
  email: ljyxxxx@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
– sequence: 2
  givenname: Xiaoyu
  surname: Chi
  fullname: Chi, Xiaoyu
  email: chixiaoyu@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
– sequence: 3
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  email: wanghuijt@migu.chinamobile.com
  organization: National Engineering Research Center of Mobile Network Technologies §Migu Interactive Entertainment Co., Ltd
– sequence: 4
  givenname: Yi
  surname: Su
  fullname: Su, Yi
  email: suyi@migu.chinamobile.com
  organization: National Engineering Research Center of Mobile Network Technologies §Migu Interactive Entertainment Co., Ltd
– sequence: 5
  givenname: Shujun
  surname: Han
  fullname: Han, Shujun
  email: hanshujun@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
– sequence: 6
  givenname: Xiaodong
  surname: Xu
  fullname: Xu, Xiaodong
  email: xuxiaodong@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
BookMark eNo10MtKAzEYBeAoCra1byCYF5iay-QyyzK2tVIUvC5LkvlTI2kiM9NC396CdXXgHPgWZ4guUk6A0C0lE0pJdfdZP9WSilJMGGFicqyUZlKeoXGlKs0F4VJzWZ2jARVCF0xSdoWGXfdNCCOiLAcoPeaQevwRGsh43pot4Ff3Bc0uhrTBJjX4Bbq8ax3gaYzZmT7khH1u8T3sg4Ni1mwA1zlGY3N7XPdwwpaphxjDBo78NJl46IPrrtGlN7GD8SlH6H0-e6sfitXzYllPV0WgSveF8dyB85UVruTUUkdUo0rjPFdgXeMlqawyUjuvrTXK0MYQz7QsWWmVBc9H6ObPDQCw_mnD1rSH9f8__BdVnV9I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCNC61545.2025.10978266
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350368369
EISSN 1558-2612
EndPage 6
ExternalDocumentID 10978266
Genre orig-research
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: L232051,L242012
  funderid: 10.13039/501100004826
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-af3cecf9b5c431b1c07d74acf37ebcdf609b7a68cf8bba7a1da0f286424b7bef3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514465200149&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu May 29 05:57:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-af3cecf9b5c431b1c07d74acf37ebcdf609b7a68cf8bba7a1da0f286424b7bef3
PageCount 6
ParticipantIDs ieee_primary_10978266
PublicationCentury 2000
PublicationDate 2025-March-24
PublicationDateYYYYMMDD 2025-03-24
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-24
  day: 24
PublicationDecade 2020
PublicationTitle IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC
PublicationTitleAbbrev WCNC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020544
Score 2.2863572
Snippet With the development of 6G immersive communication, video intelligent analytics has garnered significant attention. Video intelligent analytics has diverse...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Adaptive scheduling
adaptive video frame compression
Analytical models
Collaboration
Convex functions
Edge intelligence
ML model caching
Optimization
Performance evaluation
Resource management
Simulation
video frame scheduling
video intelligent analytics
Title Joint Video Frame Scheduling and Resource Allocation for Device-Edge Collaborative Video Intelligent Analytics
URI https://ieeexplore.ieee.org/document/10978266
WOSCitedRecordID wos001514465200149&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVoxQEubEXs8oFr2ixO7BxRaAUcqkpsvVVexlUklKCS9vvxpEkLBw7coiiL5Jd43thv3hByG3JjhXH_d-rot8eE1Z4AbTwWx5zJIBaKybrZBB-PxXSaTppi9boWBgBq8Rn08bDeyzelXuJS2QB3Sx0dTjqkw3myLtbaZFeOe7BGwOWuG7xn4yxBfuBywDDut7f-aqJSx5DRwT_ffkh622o8OtnEmSOyA8Ux2f9hJHhCiqcyLyr6lhso6Qj1VvTZoWFQZj6nsjC0Xaandx8YvhAO6vgqvQecKryhmQPNtt_ECpqHPW4sOytaG5igrXOPvI6GL9mD13RS8PKAi8qTNtKgbapi7QiDCrTPjYNC24iD0sYmfqq4TIS2QinJZWCkb0PhchOmuAIbnZJuURZwRqibQqXVaZJytN6PpEAKomIWheBr40fnpIdDN_tcm2XM2lG7-OP8JdlDgFDWFbIr0q0WS7gmu3pV5V-Lmxribz_0qaY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEXtiJ2fOCaksWJnSMKrVooUSUK9FZ5GVeRUIJK2u_HTtMWDhy4RVEWyS_xvLHfvEHo1qdKM2X-79jQb4cwLR0GUjkkDCnhXsgE4VWzCZqmbDSKB3WxelULAwCV-Axa9rDay1eFnNmlsju7W2rocLSJtkJCfHdRrrXKrwz7ILWEy1x5956kSWQZgskC_bC1vPlXG5UqinT2__n-A9Rc1-PhwSrSHKINyI_Q3g8rwWOUPxZZXuK3TEGBO1ZxhV8MHsoKzSeY5wovF-rx_YcNYBYQbBgrfgA7WThtNQGcrL-KOdQP661MO0tcWZhYY-cmeu20h0nXqXspOJlHWelwHUiQOhahNJRBeNKlyoAhdUBBSKUjNxaUR0xqJgSn3FPc1T4z2QkRVIAOTlAjL3I4RdhMolzLOIqpNd8POLMkRIQk8MGVyg3OUNMO3fhzYZcxXo7a-R_nb9BOd_jcH_d76dMF2rVgWZGXTy5Ro5zO4Apty3mZfU2vK7i_AT3qrO0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Joint+Video+Frame+Scheduling+and+Resource+Allocation+for+Device-Edge+Collaborative+Video+Intelligent+Analytics&rft.au=Li%2C+Jiayi&rft.au=Chi%2C+Xiaoyu&rft.au=Wang%2C+Hui&rft.au=Su%2C+Yi&rft.date=2025-03-24&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FWCNC61545.2025.10978266&rft.externalDocID=10978266