Improved Multi-Objective Whale Optimization for Day-Ahead Scheduling of Wind-Photovoltaic-Water-Storage Multi-energy Complements
This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor, adaptive crossover strategy and reverse learning strategy. The improved augmented whale algorithm and fast elite genetic algorithm are also comb...
Saved in:
| Published in: | Asia Conference on Power and Electrical Engineering (Online) pp. 303 - 307 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
15.04.2025
|
| Subjects: | |
| ISSN: | 2996-2951 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor, adaptive crossover strategy and reverse learning strategy. The improved augmented whale algorithm and fast elite genetic algorithm are also combined to construct a multi-objective whale optimization algorithm. Using this algorithm, a day-ahead scheduling model of a multi-energy complementary system containing wind-water pumping and storage, and the optimal day-ahead scheduling plan for a typical day-ahead multi-energy complementary system of the first type is derived with the two optimization objectives of maximizing the economic return of the multi-energy complementary system and minimizing the volatility of the renewable energy output as the two optimization objectives. From the results, it is shown that the improved multi-objective whale optimization algorithm proposed in this paper can more excellently improve the economic returns of the multi-energy complementary system and significantly reduce the volatility of the renewable energy sources at the time of grid connection. |
|---|---|
| AbstractList | This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor, adaptive crossover strategy and reverse learning strategy. The improved augmented whale algorithm and fast elite genetic algorithm are also combined to construct a multi-objective whale optimization algorithm. Using this algorithm, a day-ahead scheduling model of a multi-energy complementary system containing wind-water pumping and storage, and the optimal day-ahead scheduling plan for a typical day-ahead multi-energy complementary system of the first type is derived with the two optimization objectives of maximizing the economic return of the multi-energy complementary system and minimizing the volatility of the renewable energy output as the two optimization objectives. From the results, it is shown that the improved multi-objective whale optimization algorithm proposed in this paper can more excellently improve the economic returns of the multi-energy complementary system and significantly reduce the volatility of the renewable energy sources at the time of grid connection. |
| Author | Chen, Qiao Wang, Yi Li, Jiahao Ding, Kai Li, Xiaoping Qian, Yimin Hu, Zhuang Zheng, Jian |
| Author_xml | – sequence: 1 givenname: Zhuang surname: Hu fullname: Hu, Zhuang email: 1913221010@qq.com organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China – sequence: 2 givenname: Yimin surname: Qian fullname: Qian, Yimin email: 61893790@qq.com organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China – sequence: 3 givenname: Jian surname: Zheng fullname: Zheng, Jian email: 1516481040@qq.com organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China – sequence: 4 givenname: Qiao surname: Chen fullname: Chen, Qiao email: cq198812@163.com organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China – sequence: 5 givenname: Yi surname: Wang fullname: Wang, Yi email: yi.wang@bath.edu organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China – sequence: 6 givenname: Jiahao surname: Li fullname: Li, Jiahao email: Ljh17673627590@163.com organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China – sequence: 7 givenname: Kai surname: Ding fullname: Ding, Kai email: dingkay@sina.com organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China – sequence: 8 givenname: Xiaoping surname: Li fullname: Li, Xiaoping email: lixp@hb.sgcc.com.cn organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China |
| BookMark | eNo1kM1OwkAYAFejiYi8gYd9gcX9bbtHUlFJMJCg4Ui-br_SJW2XlIUETz66MeJpkjnMYe7JTRc6JIQKPhaC26dJvpxOE61MNpZcml-phUn4FRnZ1GZKCcM1T5NrMpDWJkxaI-7I6HDYcc6V5CpVdkC-Z-2-Dycs6fuxiZ4tih266E9I1zU0SBf76Fv_BdGHjlahp89wZpMaoaQrV2N5bHy3paGia9-VbFmHGE6hieAdW0PEnq1i6GGLlzx22G_PNA_tvsEWu3h4ILcVNAccXTgkny_Tj_yNzRevs3wyZ16kWWSQGcOtS0zpdOaqxABY46yWaGVljNTOgNBQCFtpW8gUigShKlUmFM9QOzUkj39dj4ibfe9b6M-b_2nqBzc0ZaY |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ACPEE64358.2025.11041560 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISBN | 9798331504076 |
| EISSN | 2996-2951 |
| EndPage | 307 |
| ExternalDocumentID | 11041560 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i178t-a85509c65dc48cf65aa95c942e92f5524c5a14ab19f49b27ab6eafd381308e4c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538714600051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jul 02 05:55:39 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-a85509c65dc48cf65aa95c942e92f5524c5a14ab19f49b27ab6eafd381308e4c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11041560 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-15 |
| PublicationDateYYYYMMDD | 2025-04-15 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Asia Conference on Power and Electrical Engineering (Online) |
| PublicationTitleAbbrev | ACPEE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203739 |
| Score | 1.9052249 |
| Snippet | This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 303 |
| SubjectTerms | Chaotic mapping Convergence Day ahead dispatching Dispatching Economics Electrical engineering formatting Genetic algorithms Multi objective optimization Optimization Renewable energy sources Scheduling Whale Optimization Algorithm Whale optimization algorithms |
| Title | Improved Multi-Objective Whale Optimization for Day-Ahead Scheduling of Wind-Photovoltaic-Water-Storage Multi-energy Complements |
| URI | https://ieeexplore.ieee.org/document/11041560 |
| WOSCitedRecordID | wos001538714600051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgQoKJryK-5YHVbeLYcTxWpYiprVRQu1XO2aFFokFtisTGT-ecNEUMDGyRpUTWnfLe3fmej5A7EQKiHsdMVaWciSyWzGQQMaNEYMDhrwlJOWxC9fvJZKKHG7F6qYVxzpXNZ67lH8uzfJvD2pfK2khVPt_ADH1XqbgSa20LKhEPIhXpulsn0O1Od9jrIeNK38LFZat-_dcglZJHHg7_uYMj0vxR5NHhlmuOyY5bnJD9WlW8OiVfVXXAWVpKatkgfa2gjI5nyAF0gNDwttFcUgxU6b35ZB1EYktH6DfrG9JfaJ7RMSbpbDjLixyBqzBzYGMMR5dshMk5Ys_m866UDFKPJlX_-apJnh96T91HtpmuwOahSgpm_FVmGmJpQSSATjJGS9CCO80zKbkAaUJh0lBnQqdcmTR2JrPI8FGQOAHRGWks8oU7R4PzzAgLGNlEIKyWJsUwJ05dmDqrQMAFaXpTTt-rCzSmtRUv_1i_IgfeYf7QJpTXpFEs1-6G7MFHMV8tb0u3fwPxrbBD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQQSoTX0V844HVbeLYTTxWpQgElEotarfKOTu0SDSoTZHY-Omck7SIgYEtymBFd_F7d-d7PkKuhA-Iehwz1TDmTCRNyXQCAdOh8DRY3JoQ5cMmwm43Go1UrxSr51oYa23efGbr7jE_yzcpLF2prIFU5fINzNA3pRDcK-Ra65JKwL0gDNSqX8dTjVa71-kg50rXxMVlfbXAr1EqOZPc7PzzG3ZJ7UeTR3trttkjG3a2T6orXfHigHwV9QFraC6qZU_xawFmdDhBFqBPCA5vpeqSYqhKr_UnayEWG9pHzxnXkv5C04QOMU1nvUmapQhdmZ4CG2JAOmd9TM8RfcrlbS4apA5Pig70RY0833QG7VtWzldgUz-MMqbdZWYKmtKAiADdpLWSoAS3iidScgFS-0LHvkqEinmo46bViUGOD7zICggOSWWWzuwRGpwnWhjA2CYAYZTUMQY6zdj6sTUhCDgmNWfK8XtxhcZ4ZcWTP95fkurt4PFh_HDXvT8l28557gjHl2ekks2X9pxswUc2Xcwv8l_gG0Xws4o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Asia+Conference+on+Power+and+Electrical+Engineering+%28Online%29&rft.atitle=Improved+Multi-Objective+Whale+Optimization+for+Day-Ahead+Scheduling+of+Wind-Photovoltaic-Water-Storage+Multi-energy+Complements&rft.au=Hu%2C+Zhuang&rft.au=Qian%2C+Yimin&rft.au=Zheng%2C+Jian&rft.au=Chen%2C+Qiao&rft.date=2025-04-15&rft.pub=IEEE&rft.eissn=2996-2951&rft.spage=303&rft.epage=307&rft_id=info:doi/10.1109%2FACPEE64358.2025.11041560&rft.externalDocID=11041560 |