Improved Multi-Objective Whale Optimization for Day-Ahead Scheduling of Wind-Photovoltaic-Water-Storage Multi-energy Complements

This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor, adaptive crossover strategy and reverse learning strategy. The improved augmented whale algorithm and fast elite genetic algorithm are also comb...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Asia Conference on Power and Electrical Engineering (Online) s. 303 - 307
Hlavní autoři: Hu, Zhuang, Qian, Yimin, Zheng, Jian, Chen, Qiao, Wang, Yi, Li, Jiahao, Ding, Kai, Li, Xiaoping
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 15.04.2025
Témata:
ISSN:2996-2951
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor, adaptive crossover strategy and reverse learning strategy. The improved augmented whale algorithm and fast elite genetic algorithm are also combined to construct a multi-objective whale optimization algorithm. Using this algorithm, a day-ahead scheduling model of a multi-energy complementary system containing wind-water pumping and storage, and the optimal day-ahead scheduling plan for a typical day-ahead multi-energy complementary system of the first type is derived with the two optimization objectives of maximizing the economic return of the multi-energy complementary system and minimizing the volatility of the renewable energy output as the two optimization objectives. From the results, it is shown that the improved multi-objective whale optimization algorithm proposed in this paper can more excellently improve the economic returns of the multi-energy complementary system and significantly reduce the volatility of the renewable energy sources at the time of grid connection.
AbstractList This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor, adaptive crossover strategy and reverse learning strategy. The improved augmented whale algorithm and fast elite genetic algorithm are also combined to construct a multi-objective whale optimization algorithm. Using this algorithm, a day-ahead scheduling model of a multi-energy complementary system containing wind-water pumping and storage, and the optimal day-ahead scheduling plan for a typical day-ahead multi-energy complementary system of the first type is derived with the two optimization objectives of maximizing the economic return of the multi-energy complementary system and minimizing the volatility of the renewable energy output as the two optimization objectives. From the results, it is shown that the improved multi-objective whale optimization algorithm proposed in this paper can more excellently improve the economic returns of the multi-energy complementary system and significantly reduce the volatility of the renewable energy sources at the time of grid connection.
Author Chen, Qiao
Wang, Yi
Li, Jiahao
Ding, Kai
Li, Xiaoping
Qian, Yimin
Hu, Zhuang
Zheng, Jian
Author_xml – sequence: 1
  givenname: Zhuang
  surname: Hu
  fullname: Hu, Zhuang
  email: 1913221010@qq.com
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
– sequence: 2
  givenname: Yimin
  surname: Qian
  fullname: Qian, Yimin
  email: 61893790@qq.com
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
– sequence: 3
  givenname: Jian
  surname: Zheng
  fullname: Zheng, Jian
  email: 1516481040@qq.com
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
– sequence: 4
  givenname: Qiao
  surname: Chen
  fullname: Chen, Qiao
  email: cq198812@163.com
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
– sequence: 5
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  email: yi.wang@bath.edu
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
– sequence: 6
  givenname: Jiahao
  surname: Li
  fullname: Li, Jiahao
  email: Ljh17673627590@163.com
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
– sequence: 7
  givenname: Kai
  surname: Ding
  fullname: Ding, Kai
  email: dingkay@sina.com
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
– sequence: 8
  givenname: Xiaoping
  surname: Li
  fullname: Li, Xiaoping
  email: lixp@hb.sgcc.com.cn
  organization: Power Grid Technology Center, Electric Power Research Institute of State Grid Hubei Electric Power Co., Ltd,Wuhan,China
BookMark eNo1kM1OwkAYAFejiYi8gYd9gcX9bbtHUlFJMJCg4Ui-br_SJW2XlIUETz66MeJpkjnMYe7JTRc6JIQKPhaC26dJvpxOE61MNpZcml-phUn4FRnZ1GZKCcM1T5NrMpDWJkxaI-7I6HDYcc6V5CpVdkC-Z-2-Dycs6fuxiZ4tih266E9I1zU0SBf76Fv_BdGHjlahp89wZpMaoaQrV2N5bHy3paGia9-VbFmHGE6hieAdW0PEnq1i6GGLlzx22G_PNA_tvsEWu3h4ILcVNAccXTgkny_Tj_yNzRevs3wyZ16kWWSQGcOtS0zpdOaqxABY46yWaGVljNTOgNBQCFtpW8gUigShKlUmFM9QOzUkj39dj4ibfe9b6M-b_2nqBzc0ZaY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACPEE64358.2025.11041560
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISBN 9798331504076
EISSN 2996-2951
EndPage 307
ExternalDocumentID 11041560
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-a85509c65dc48cf65aa95c942e92f5524c5a14ab19f49b27ab6eafd381308e4c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538714600051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 02 05:55:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-a85509c65dc48cf65aa95c942e92f5524c5a14ab19f49b27ab6eafd381308e4c3
PageCount 5
ParticipantIDs ieee_primary_11041560
PublicationCentury 2000
PublicationDate 2025-April-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-15
  day: 15
PublicationDecade 2020
PublicationTitle Asia Conference on Power and Electrical Engineering (Online)
PublicationTitleAbbrev ACPEE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203739
Score 1.9052249
Snippet This study proposes an improved whale optimization algorithm. The algorithm has four improvement strategies: chaotic mapping, nonlinear convergence factor,...
SourceID ieee
SourceType Publisher
StartPage 303
SubjectTerms Chaotic mapping
Convergence
Day ahead dispatching
Dispatching
Economics
Electrical engineering
formatting
Genetic algorithms
Multi objective optimization
Optimization
Renewable energy sources
Scheduling
Whale Optimization Algorithm
Whale optimization algorithms
Title Improved Multi-Objective Whale Optimization for Day-Ahead Scheduling of Wind-Photovoltaic-Water-Storage Multi-energy Complements
URI https://ieeexplore.ieee.org/document/11041560
WOSCitedRecordID wos001538714600051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA46BD35NfGbHLxma_PRNMcxJ562wpTtNtIkdRNcZesEb_503_Rj4sGDl1JKWkpeeJ48b94nL0J3HDiNR7Ehwl-4FJKoONRExzbMqKQsEqZsNiGHw3g6VUltVi-9MM65svjMdfxtuZdvc7PxqbIuUJXXG6DQd6WMKrPWNqHCaMAkU021TqC6vX4yGADjCl_CRUWnef1XI5WSRx4O__kHR6j948jDyZZrjtGOW56g_cZVvD5FX1V2wFlcWmrJKH2toAxP5sABeATQ8FZ7LjEsVPG9_iQ9QGKLxxA36wvSX3Ce4QmIdJLM8yIH4Cr0wpAJLEdXZAziHLCn_rwrLYPYo0lVf75uo-eHwVP_kdTdFcgilHEB0QBxokwkrOGxySKhtRJGceoUzYSg3Agdcp2GKuMqpVKnkdOZBYZnQey4YWeotcyX7hxhP5RRJQIHGlcDBgoRWeaUcIr5o5AvUNtP5ey9OkBj1szi5R_Pr9CBD5jftAnFNWoVq427QXvmo1isV7dl2L8B-T-uKg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yhXny18Tf5uA1W5vktc1xzImizsEm221kaeomuMrWCd78031pu4kHD15KKSWUvPJ9-V7el0fIlUROk0FkGLiLDCFkKvI101HsJzzkIgCTN5sIO51oOFTd0qyee2GstXnxma2723wvP07N0qXKGkhVTm-gQt8EKblX2LXWKRXBPREKtarX8VSj2eq228i54Iq4ONRXA_xqpZIzyc3OP79hl9R-PHm0u2abPbJhZ_ukuvIVLw7IV5EfsDHNTbXsafxagBkdTJAF6BOCw1vpuqS4VKXX-pM1EYtj2sPIxa4k_YWmCR2gTGfdSZqlCF2Znho2wAXpnPVQniP6lMPb3DRIHZ4UFeiLGnm-afdbt6zsr8CmfhhlGA-UJ8oEEBsZmSQArRUYJblVPAHg0oD2pR77KpFqzEM9DqxOYuR44UVWGnFIKrN0Zo8Ida8KrsCzqHI1oiBAEAurwCrhDkM-JjU3laP34giN0WoWT_54fkmqt_3Hh9HDXef-lGy74LktHB_OSCWbL-052TIf2XQxv8h_gW8zGrFx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Asia+Conference+on+Power+and+Electrical+Engineering+%28Online%29&rft.atitle=Improved+Multi-Objective+Whale+Optimization+for+Day-Ahead+Scheduling+of+Wind-Photovoltaic-Water-Storage+Multi-energy+Complements&rft.au=Hu%2C+Zhuang&rft.au=Qian%2C+Yimin&rft.au=Zheng%2C+Jian&rft.au=Chen%2C+Qiao&rft.date=2025-04-15&rft.pub=IEEE&rft.eissn=2996-2951&rft.spage=303&rft.epage=307&rft_id=info:doi/10.1109%2FACPEE64358.2025.11041560&rft.externalDocID=11041560