On the Exploration of Convolutional Variational Autoencoders for Analog Integrated Circuit Post-Placement Performance Regression

The layout-aware synthesis of analog integrated circuits (ICs) still poses significant challenges, not only due to the inherent impact of parasitic structures and layout-dependent effects (LDEs) on the expected functional behavior, but also due to the computational effort required to conduct such op...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (Online) s. 1 - 4
Hlavní autori: Almeida, Carlos, Oliveira, Marco, Martins, Ricardo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 07.07.2025
Predmet:
ISSN:2575-4890
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The layout-aware synthesis of analog integrated circuits (ICs) still poses significant challenges, not only due to the inherent impact of parasitic structures and layout-dependent effects (LDEs) on the expected functional behavior, but also due to the computational effort required to conduct such optimizations. Therefore, this paper paves the way for the development of novel post-layout performance regressors, with the ultimate goal of bypassing time-consuming extractions and simulations. Here, deep learning (DL) models, namely convolutional variational autoencoders (VAEs) and multi-layer perceptrons (MLPs), are combined to extract essential floorplan features and learn the underlying relationship between placement and post-layout performance. Preliminary results reveal mean absolute percentage errors (MAPE) below 2% for five out of the six performance metrics considered for a typical analog structure, and below 1% for four, confirming its ability to generalize across unseen layouts.
AbstractList The layout-aware synthesis of analog integrated circuits (ICs) still poses significant challenges, not only due to the inherent impact of parasitic structures and layout-dependent effects (LDEs) on the expected functional behavior, but also due to the computational effort required to conduct such optimizations. Therefore, this paper paves the way for the development of novel post-layout performance regressors, with the ultimate goal of bypassing time-consuming extractions and simulations. Here, deep learning (DL) models, namely convolutional variational autoencoders (VAEs) and multi-layer perceptrons (MLPs), are combined to extract essential floorplan features and learn the underlying relationship between placement and post-layout performance. Preliminary results reveal mean absolute percentage errors (MAPE) below 2% for five out of the six performance metrics considered for a typical analog structure, and below 1% for four, confirming its ability to generalize across unseen layouts.
Author Almeida, Carlos
Oliveira, Marco
Martins, Ricardo
Author_xml – sequence: 1
  givenname: Carlos
  surname: Almeida
  fullname: Almeida, Carlos
  email: carlos.antunes.almeida@tecnico.ulisboa.pt
  organization: Universidade de Lisboa,Instituto Superior Técnico,Portugal
– sequence: 2
  givenname: Marco
  surname: Oliveira
  fullname: Oliveira, Marco
  organization: Synopsys,Portugal
– sequence: 3
  givenname: Ricardo
  surname: Martins
  fullname: Martins, Ricardo
  email: ricardo.m.martins@tecnico.ulisboa.pt
  organization: Universidade de Lisboa,Instituto Superior Técnico,Portugal
BookMark eNo1kM1OwzAQhA0CiVL6Bhz8Ain-Wzs-RqFApaJW_F0rK9mUoNSunBTBjUfHQLnMzoxG32HPyYkPHgmhnE05Z_bq8b4orzUAyKlgAn5LwZk5IhNrbC4lByEtqGMyEmAgU7llZ2TS92-MMSk4NxZG5Gvp6fCKdPax60J0Qxs8DQ0tg38P3f4nuo6-uNi6gy_2Q0BfhRpjT5sQaZHasKFzP-AmAbCmZRurfTvQVeiHbNW5CrfoU8SY9lvnK6QPaYt9n5AX5LRxXY-Twx2T55vZU3mXLZa387JYZC03-ZA5zZjlTiVVRlhlwZi8Bom6Mk5BDUwZU2mnRd1YxNxIbniloakh17Kxckwu_7gtIq53sd26-Ln-f5r8BlFOZNo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SMACD65553.2025.11092107
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331523954
EISSN 2575-4890
EndPage 4
ExternalDocumentID 11092107
Genre orig-research
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  funderid: 10.13039/501100001871
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-a60091a40094729495778d53e6c7a45d50477c6a62df9ee873171c65fd5863f93
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554977800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 06 17:55:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-a60091a40094729495778d53e6c7a45d50477c6a62df9ee873171c65fd5863f93
PageCount 4
ParticipantIDs ieee_primary_11092107
PublicationCentury 2000
PublicationDate 2025-July-7
PublicationDateYYYYMMDD 2025-07-07
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-7
  day: 07
PublicationDecade 2020
PublicationTitle International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (Online)
PublicationTitleAbbrev SMACD
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211795
Score 1.9140245
Snippet The layout-aware synthesis of analog integrated circuits (ICs) still poses significant challenges, not only due to the inherent impact of parasitic structures...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analog integrated circuits
Analytical models
Autoencoders
Computational modeling
Design automation
Electronic Design Automation
Feature extraction
Integrated circuit modeling
Layout
Machine Learning
Optimization
Performance metrics
Performance Modeling
Post-layout Performance
Title On the Exploration of Convolutional Variational Autoencoders for Analog Integrated Circuit Post-Placement Performance Regression
URI https://ieeexplore.ieee.org/document/11092107
WOSCitedRecordID wos001554977800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46PHhSceJvcvCarWuapDmO6VDQWfwxdhtpko6CtDLbnf3TfUm7DQ8evJVCSngJvO-9ft_3ELpRqUyzTGgiaRCQyGpKABVxQk2oNIWiKPWU_-mjmEzi2UwmrVjda2GstZ58Znvu0f_LN6WuXaus79wxoUQRu2hXCN6ItTYNFRo6dzO2ZusEsv_6NBzdcsYYhTowZL318l-DVHweGR_8cweHqLtV5OFkk2uO0I4tjtH3c4EBv-GGR-dDjMsMw5JVe6HUB55CMdw2_PCwrkpnXOnIyxjQKnaWJOUCP6w9Iwwe5Utd5xV2Q3xJ4nrsbkc42eoL8ItdNOTZoovex3dvo3vSTlQg-UDEFVEAb-RARY5PCKgaiiMhYsOo5VqoiBkWREJornhoMmltLABdDDRnmWExp5mkJ6hTlIU9RRi-E4WhNALSXcS1jC1AFZ5qqgCjpVKeoa4L3_yzMc2YryN3_sf7C7TvDskzYcUl6lTL2l6hPb2q8q_ltT_qH9dOqqQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjN1jVN0hzHdDjcZtE5dhtpko6CtDLbnf3TTbJ2w4MHb6XQEF4C7_tev_c9AO5FzOMkYRJx7Hko0BIjg4oowsoXEhtSFDvJ_3TIxuNwNuNR1azuemG01k58plv20f3LV7ksbamsbd0xDUVhu2DPjs6q2rU2JRXsW38zUut1PN5-G3V7D5QQgg0T9EmrXuDXKBWXSfpH_9zDMWhue_JgtMk2J2BHZ6fg-yWDBsHBtZLOBRnmCTSfrKorJT7g1NDhquQHu2WRW-tKK1-GBq9Ca0qSL-Cgdo1QsJcuZZkW0I7xRZGtstsdwWjbYQBf9WItn82a4L3_OOk9oWqmAko7LCyQMACHd0RgFYUGVxt6xFioCNZUMhEQRbyAMUkF9VXCtQ6ZwRcdSUmiSEhxwvEZaGR5ps8BNOsEvs8VMwkvoJKH2oAVGkssDEqLOb8ATRu--efaNmNeR-7yj_d34OBpMhrOh4Px8xU4tAfmdLHsGjSKZalvwL5cFenX8tYd-w_oQ63t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Synthesis%2C+Modeling%2C+Analysis+and+Simulation+Methods+and+Applications+to+Circuit+Design+%28Online%29&rft.atitle=On+the+Exploration+of+Convolutional+Variational+Autoencoders+for+Analog+Integrated+Circuit+Post-Placement+Performance+Regression&rft.au=Almeida%2C+Carlos&rft.au=Oliveira%2C+Marco&rft.au=Martins%2C+Ricardo&rft.date=2025-07-07&rft.pub=IEEE&rft.eissn=2575-4890&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FSMACD65553.2025.11092107&rft.externalDocID=11092107