Exploring Spike Encoder Designs for Near-Sensor Edge Computing

Robust sensing and detection require energy- and cost-efficient hardware and software capable of operating reliably in dynamic environments with wide variations in operating conditions. Spiking Neural Networks (SNNs), widely recognized as biologically inspired computing models, offer significant pot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 Neuro Inspired Computational Elements (NICE) s. 1 - 9
Hlavní autoři: Jin, Jingang, Zhang, Zhenhang, Qiu, Qinru
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 25.03.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Robust sensing and detection require energy- and cost-efficient hardware and software capable of operating reliably in dynamic environments with wide variations in operating conditions. Spiking Neural Networks (SNNs), widely recognized as biologically inspired computing models, offer significant potential for near-sensor signal processing due to their energy efficiency and adaptability. A critical step toward broader adoption of this novel computing paradigm is the development of efficient frontend designs capable of encoding multichannel time-series data from sensors into sparse spike trains. This work introduces two spike-encoder architectures: a population coding-based encoder and a reservoir computing- based encoder. These architectures convert multivariate time series into multichannel spike sequences, performing sparse coding that effectively projects the input temporal sequences into a high-dimensional binary feature space in both spatial and temporal domains. When combined with an SNN-based backend classifier, the encoded spike sequences enable effective classification. Furthermore, our proposed reservoir encoder achieves lower implementation complexity compared to conventional reservoir models while maintaining effective sparse coding capabilities. Finally, we demonstrate that the in- hardware online learning capability of SNN models can alleviate stringent requirements on encoder performance and precision to allow cost reduction and design simplification.
AbstractList Robust sensing and detection require energy- and cost-efficient hardware and software capable of operating reliably in dynamic environments with wide variations in operating conditions. Spiking Neural Networks (SNNs), widely recognized as biologically inspired computing models, offer significant potential for near-sensor signal processing due to their energy efficiency and adaptability. A critical step toward broader adoption of this novel computing paradigm is the development of efficient frontend designs capable of encoding multichannel time-series data from sensors into sparse spike trains. This work introduces two spike-encoder architectures: a population coding-based encoder and a reservoir computing- based encoder. These architectures convert multivariate time series into multichannel spike sequences, performing sparse coding that effectively projects the input temporal sequences into a high-dimensional binary feature space in both spatial and temporal domains. When combined with an SNN-based backend classifier, the encoded spike sequences enable effective classification. Furthermore, our proposed reservoir encoder achieves lower implementation complexity compared to conventional reservoir models while maintaining effective sparse coding capabilities. Finally, we demonstrate that the in- hardware online learning capability of SNN models can alleviate stringent requirements on encoder performance and precision to allow cost reduction and design simplification.
Author Jin, Jingang
Zhang, Zhenhang
Qiu, Qinru
Author_xml – sequence: 1
  givenname: Jingang
  surname: Jin
  fullname: Jin, Jingang
  email: jjin24@syr.edu
  organization: Syracuse University,Department of Electrical Engineering and Computer Science
– sequence: 2
  givenname: Zhenhang
  surname: Zhang
  fullname: Zhang, Zhenhang
  email: zzhan281@syr.edu
  organization: Syracuse University,Department of Electrical Engineering and Computer Science
– sequence: 3
  givenname: Qinru
  surname: Qiu
  fullname: Qiu, Qinru
  email: qinru.qiu@gmail.com
  organization: Syracuse University,Department of Electrical Engineering and Computer Science
BookMark eNo1j89KAzEYxCPYg9a-QcG8wNYkX_5eBFnXWij10N5L2v2yBNtkyVbQt3dFncsMP5iBuSXXKSck5J6zBefMPWxWdaMVKLYQTKgfppVg-orMnHEWgCsGTMgb8th89qdcYuroto_vSJt0zC0W-oxD7NJAQy50g75UW0zDmJu2Q1rnc_9xGUt3ZBL8acDZn0_J7qXZ1a_V-m25qp_WVeTGXioPzIjgeAgSrPVokBmpJBwx2FFCo9UHKTBoPDg0Ep3QwGWQQrRecpiS-e9sRMR9X-LZl6_9_yv4BvqdRfM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NICE65350.2025.11065206
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503024
EndPage 9
ExternalDocumentID 11065206
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i178t-a3072f91ff4388ae7e074543cef888826e86b42ef6eb9e74e926314f422da413
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553129800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 16 07:54:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-a3072f91ff4388ae7e074543cef888826e86b42ef6eb9e74e926314f422da413
PageCount 9
ParticipantIDs ieee_primary_11065206
PublicationCentury 2000
PublicationDate 2025-March-25
PublicationDateYYYYMMDD 2025-03-25
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-25
  day: 25
PublicationDecade 2020
PublicationTitle 2025 Neuro Inspired Computational Elements (NICE)
PublicationTitleAbbrev NICE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9033731
Snippet Robust sensing and detection require energy- and cost-efficient hardware and software capable of operating reliably in dynamic environments with wide...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Complexity theory
Computational modeling
Computer architecture
Costs
Edge computing
Encoding
Hardware
in-Hardware Learning
Reservoirs
SNN
Spike encoder
Transforms
Title Exploring Spike Encoder Designs for Near-Sensor Edge Computing
URI https://ieeexplore.ieee.org/document/11065206
WOSCitedRecordID wos001553129800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVt6NCpLU3pNxq6KrH1aS1dUod2MYFkyBZs61RCwQn5-v09yUlKhw5dhBA2QrLNuye_d0fIS-qsqYSTzCI6M-kdZ7auLTaZ5KAdhiBJLDZhiiKbTu1ob1aPXhgAiOIz6IVu_JfvFvU2HJX1Eaq04iHB9qkxujVr7TVbaWL7xccg10qoBGkfV73D1b_qpkTYGF78c8JL0v0x4NHREVquyAk01-T1qJej4-X8C2jeBEP6ir5FFcaaYvxJC3xz2Ri5KfZz9wm0LduAN3XJZJhPBu9sX_6AzVOTbViJnx_3NvVeiiwrwQDCvZKiBo-0FWkBZLrCDfUaKgtGguVapNJLzl2J2HRDOs2igVtCQ5BTJcJCYD-qDFFAqkOmLSW0s3V5R7ph7bNlm-Bidlj2_R_jD-Q87HCQYnH1SDqb1RaeyFm928zXq-f4WL4BcxKM7g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBT2pOPG3OXjN1uZXm4uX2bHhLIPtsNtomxcZQjf2w7_fl2xTPHjwEkJoCUlbvvel3_ceIU-xNUkprGQG0ZlJZzkzVWWwSSUHbTEEiUKxiSTP08nEDHdm9eCFAYAgPoOW74Z_-XZebfxRWRuhSivuE2wfKil5tLVr7VRbcWTaeb-TaSVUhMSPq9b--l-VUwJwdE__OeUZaf5Y8OjwG1zOyQHUF-T5WzFHR4vZB9Cs9pb0JX0JOowVxQiU5vjushGyU-xn9h3otnAD3tQk42427vTYrgACm8VJumYFfoDcmdg5KdK0gAQQ8JUUFTgkrkgMINUlbqnTUBpIJBiuRSyd5NwWiE6XpFHPa7gi1Ic5ZSQMeP6jCh8HxNrn2lJCW1MV16Tp1z5dbFNcTPfLvvlj_JEc98Zvg-mgn7_ekhO_216YxdUdaayXG7gnR9XnerZaPoRH9AX8LpA1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+Neuro+Inspired+Computational+Elements+%28NICE%29&rft.atitle=Exploring+Spike+Encoder+Designs+for+Near-Sensor+Edge+Computing&rft.au=Jin%2C+Jingang&rft.au=Zhang%2C+Zhenhang&rft.au=Qiu%2C+Qinru&rft.date=2025-03-25&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FNICE65350.2025.11065206&rft.externalDocID=11065206