Task-Scalable Image Semantic Communication via Conditional Affine Transforms and Pixel-Wise Quality Control
Deep autoencoder-based joint source-channel coding (JSCC) has gained significant attention for end-to-end image semantic communication systems. However, existing methods typically optimize a uniform bandwidth-distortion trade-off over the entire image, potentially leading to the loss of crucial deta...
Uloženo v:
| Vydáno v: | IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
24.03.2025
|
| Témata: | |
| ISSN: | 1558-2612 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep autoencoder-based joint source-channel coding (JSCC) has gained significant attention for end-to-end image semantic communication systems. However, existing methods typically optimize a uniform bandwidth-distortion trade-off over the entire image, potentially leading to the loss of crucial details and inconsistent content for tasks with diverse regions of interest. In this paper, we propose a flexible fine-grained bandwidth allocation method for deep JSCC that enables highly efficient, task-scalable image transmission across various semantic communication scenarios using a single codec. Our method optimizes the bandwidth-distortion trade-off by constraining image distortion through a 2D pixel-wise quality map. Guided by the pixel-wise quality map, we introduce a novel conditional affine transformation that generates dedicated semantic feature maps tailored to specific tasks. Additionally, we introduce a semantic guidance network to automatically generate task-aware quality maps via backpropagation without additional retraining. This approach leverages a pretrained variable-length neural JSCC codec and adjusts the transmission quality on a fine-grained level, eliminating the need to train separate models for different tasks. Experimental results demonstrate the effectiveness of our bandwidth allocation method, enhancing task-specific performance in various goal-oriented image communication scenarios without additional training. |
|---|---|
| AbstractList | Deep autoencoder-based joint source-channel coding (JSCC) has gained significant attention for end-to-end image semantic communication systems. However, existing methods typically optimize a uniform bandwidth-distortion trade-off over the entire image, potentially leading to the loss of crucial details and inconsistent content for tasks with diverse regions of interest. In this paper, we propose a flexible fine-grained bandwidth allocation method for deep JSCC that enables highly efficient, task-scalable image transmission across various semantic communication scenarios using a single codec. Our method optimizes the bandwidth-distortion trade-off by constraining image distortion through a 2D pixel-wise quality map. Guided by the pixel-wise quality map, we introduce a novel conditional affine transformation that generates dedicated semantic feature maps tailored to specific tasks. Additionally, we introduce a semantic guidance network to automatically generate task-aware quality maps via backpropagation without additional retraining. This approach leverages a pretrained variable-length neural JSCC codec and adjusts the transmission quality on a fine-grained level, eliminating the need to train separate models for different tasks. Experimental results demonstrate the effectiveness of our bandwidth allocation method, enhancing task-specific performance in various goal-oriented image communication scenarios without additional training. |
| Author | Wang, Sixian Yao, Shengshi Wang, Fengyu Si, Zhongwei Wang, Jun Liu, Zhenyu Dai, Jincheng |
| Author_xml | – sequence: 1 givenname: Jun surname: Wang fullname: Wang, Jun organization: Beijing University of Posts and Telecommunications,Key Laboratory of Universal Wireless Communications, Ministry of Education,Beijing,China – sequence: 2 givenname: Shengshi surname: Yao fullname: Yao, Shengshi organization: Beijing University of Posts and Telecommunications,Key Laboratory of Universal Wireless Communications, Ministry of Education,Beijing,China – sequence: 3 givenname: Sixian surname: Wang fullname: Wang, Sixian organization: Beijing University of Posts and Telecommunications,Key Laboratory of Universal Wireless Communications, Ministry of Education,Beijing,China – sequence: 4 givenname: Zhongwei surname: Si fullname: Si, Zhongwei email: sizhongwei@bupt.edu.cn organization: Beijing University of Posts and Telecommunications,Key Laboratory of Universal Wireless Communications, Ministry of Education,Beijing,China – sequence: 5 givenname: Fengyu surname: Wang fullname: Wang, Fengyu organization: Beijing University of Posts and Telecommunications,Key Laboratory of Universal Wireless Communications, Ministry of Education,Beijing,China – sequence: 6 givenname: Zhenyu surname: Liu fullname: Liu, Zhenyu organization: Institute for Communication Systems, University of Surrey,United Kingdom – sequence: 7 givenname: Jincheng surname: Dai fullname: Dai, Jincheng email: daijincheng@bupt.edu.cn organization: Beijing University of Posts and Telecommunications,Key Laboratory of Universal Wireless Communications, Ministry of Education,Beijing,China |
| BookMark | eNo1kN1KwzAcxaMouM29gWBeoDUfTZtcjqJzMPxglV2Of9NE4tJUmk7c29uhXh3OD86Bc6boInTBIHRLSUopUXfb8qnMqchEyggT6YgKKbg8Q3NVKMkF4bnkuTpHEyqETFhO2RWaxvhBCCMiyyZoX0HcJxsNHmpv8KqFd4M3poUwOI3Lrm0PwWkYXBfwl4ORhMadHHi8sNYFg6seQrRd30YMocEv7tv4ZOuiwa8H8G44nkJD3_lrdGnBRzP_0xl6e7ivysdk_bxclYt14mghh0TpWnMpKalJXihjFTAQvKG1VbTJLAc2jrVAdS0azcwIWUMVaJoVWosM-Azd_PY6Y8zus3ct9Mfd_zn8B-SAXSE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WCNC61545.2025.10978538 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350368369 |
| EISSN | 1558-2612 |
| EndPage | 6 |
| ExternalDocumentID | 10978538 |
| Genre | orig-research |
| GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i178t-9cbc38810b0679ef9a2a53d1bf91d4f3a2202fa1cb5dc2e91d2d19ac147cc54a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514465200417&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Nov 05 07:05:02 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-9cbc38810b0679ef9a2a53d1bf91d4f3a2202fa1cb5dc2e91d2d19ac147cc54a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10978538 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-March-24 |
| PublicationDateYYYYMMDD | 2025-03-24 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-March-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC |
| PublicationTitleAbbrev | WCNC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020544 |
| Score | 2.286331 |
| Snippet | Deep autoencoder-based joint source-channel coding (JSCC) has gained significant attention for end-to-end image semantic communication systems. However,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Backpropagation Channel allocation Codecs Image coding Image communication Image quality Image semantic communications joint source and channel coding Quality control Semantic communication task-scalable Training Transforms |
| Title | Task-Scalable Image Semantic Communication via Conditional Affine Transforms and Pixel-Wise Quality Control |
| URI | https://ieeexplore.ieee.org/document/10978538 |
| WOSCitedRecordID | wos001514465200417&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYK6tAufVH1LQ9dDTh2YnusoqJ2QUhQwYZsx5EiSqgIoPbf92weLUOHbtEptqXPSu753SH0KFWumGaKgG8gCHcxhW_OcKK50DIx0o-DD8MmRLcrRyPV25DVAxfGOReKz1zTP4ZcfjazSx8qa_lsKagXWUM1IZI1WWvnXYHtwTcFXPBea5h208TbB-ADRnFzu3RviErQIZ2Tf55-iho_bDzc2-mZM3TgynN0_KuR4AWaDHQ1IX3A2zOh8OsU_hK476YAW2HxHgkErwoNEp-pDlFA_JTnsBEebC3YCusyw73i072TYVE5vG6z8eUX-ar2BnrrPA_SF7IZo0AKKuSCKGssk5K2jQ8auVzpSMcsoyZXNOM50xEglGtqTZzZyIEwyqjSlnJhbcw1u0T1cla6K4STtk4kzyzYYIwnhoNnHXuqrQE7kjFqr1HD4zb-WHfKGG8hu_lDfouO_O34mq6I36H6Yr509-jQrhZFNX8I9_sN0immfg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BfXF28S7efA129KkbfIow7HhLINVtreRpCmUuU52Q_-9J91F9-CDb-XQJPCF9ly_cxB6FDKVTDFJwDcICbc-hW9Oc6J4qESghRsHXwybCKNI9PuysyKrF1wYa21RfGYr7rHI5SdjM3ehsqrLloJ6Ebtoz-fcqy3pWhv_CqwPvirhgjervXpUD5yFAF6g51fWi7fGqBRapHH8z_NPUPmHj4c7G01zinZsfoaOfrUSPEfDWE2HpAuIOy4Ubo3gP4G7dgTAZQZv0UDwIlMgcbnqIg6In9IUNsLx2oadYpUnuJN92nfSy6YWLxttfLlFrq69jN4az3G9SVaDFEhGQzEj0mjDhKA17cJGNpXKUz5LqE4lTXjKlAcIpYoa7SfGsyD0EiqVoTw0xueKXaBSPs7tJcJBTQWCJwasMMYDzcG39h3ZVoMlyRg1V6jscBt8LHtlDNaQXf8hf0AHzfi1PWi3opcbdOhuylV4efwWlWaTub1D-2Yxy6aT--KuvwGn0KnF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Task-Scalable+Image+Semantic+Communication+via+Conditional+Affine+Transforms+and+Pixel-Wise+Quality+Control&rft.au=Wang%2C+Jun&rft.au=Yao%2C+Shengshi&rft.au=Wang%2C+Sixian&rft.au=Si%2C+Zhongwei&rft.date=2025-03-24&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FWCNC61545.2025.10978538&rft.externalDocID=10978538 |