Meta-MOGA: Meta-learning Multi-Objective Genetic Algorithm

In the field of single objective optimization algorithms, learned evolutionary algorithms have achieved success in obtaining better performance than human-designed strategies. However, these learnable evolutionary algorithms are only applicable to single-objective optimization and cannot be applied...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 4
Hlavní autoři: Li, Tianyu, Wu, Kai, Li, Xiaobin, Teng, Xiangyi, Liu, Jing
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 08.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the field of single objective optimization algorithms, learned evolutionary algorithms have achieved success in obtaining better performance than human-designed strategies. However, these learnable evolutionary algorithms are only applicable to single-objective optimization and cannot be applied to multi-objective optimization problems. In this study, we parameterize the mutation and crossover operators using the multi-head self-attention and the selection operator using a lightweight multilayer perceptron. We utilize the evolution strategy to train their parameters across multiple multi-objective optimization problems, resulting in the development of the Meta-Learned Multi-Objective Genetic Algorithm (Meta-MOGA). We compare Meta-MOGA with other multi-objective evolutionary algorithms on various test problems and evaluate its performance on untrained MOPs. The results demonstrate that our Meta-MOGA exhibits potential and generalizability.
DOI:10.1109/CEC65147.2025.11043112