Meta-MOGA: Meta-learning Multi-Objective Genetic Algorithm
In the field of single objective optimization algorithms, learned evolutionary algorithms have achieved success in obtaining better performance than human-designed strategies. However, these learnable evolutionary algorithms are only applicable to single-objective optimization and cannot be applied...
Uložené v:
| Vydané v: | 2025 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 4 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
08.06.2025
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the field of single objective optimization algorithms, learned evolutionary algorithms have achieved success in obtaining better performance than human-designed strategies. However, these learnable evolutionary algorithms are only applicable to single-objective optimization and cannot be applied to multi-objective optimization problems. In this study, we parameterize the mutation and crossover operators using the multi-head self-attention and the selection operator using a lightweight multilayer perceptron. We utilize the evolution strategy to train their parameters across multiple multi-objective optimization problems, resulting in the development of the Meta-Learned Multi-Objective Genetic Algorithm (Meta-MOGA). We compare Meta-MOGA with other multi-objective evolutionary algorithms on various test problems and evaluate its performance on untrained MOPs. The results demonstrate that our Meta-MOGA exhibits potential and generalizability. |
|---|---|
| AbstractList | In the field of single objective optimization algorithms, learned evolutionary algorithms have achieved success in obtaining better performance than human-designed strategies. However, these learnable evolutionary algorithms are only applicable to single-objective optimization and cannot be applied to multi-objective optimization problems. In this study, we parameterize the mutation and crossover operators using the multi-head self-attention and the selection operator using a lightweight multilayer perceptron. We utilize the evolution strategy to train their parameters across multiple multi-objective optimization problems, resulting in the development of the Meta-Learned Multi-Objective Genetic Algorithm (Meta-MOGA). We compare Meta-MOGA with other multi-objective evolutionary algorithms on various test problems and evaluate its performance on untrained MOPs. The results demonstrate that our Meta-MOGA exhibits potential and generalizability. |
| Author | Wu, Kai Teng, Xiangyi Li, Tianyu Liu, Jing Li, Xiaobin |
| Author_xml | – sequence: 1 givenname: Tianyu surname: Li fullname: Li, Tianyu email: 22171214741@stu.xidian.edu.cn organization: Xidian University,Guangzhou Institute of Technology,Guangzhou,China – sequence: 2 givenname: Kai surname: Wu fullname: Wu, Kai email: kwu@xidian.edu.cn organization: Xidian University,School of Artificial Intelligence,Xi'an,China – sequence: 3 givenname: Xiaobin surname: Li fullname: Li, Xiaobin email: 22171214784@stu.xidian.edu.cn organization: Xidian University,Guangzhou Institute of Technology,Guangzhou,China – sequence: 4 givenname: Xiangyi surname: Teng fullname: Teng, Xiangyi email: tengxiangyi@xidian.edu.cn organization: Xidian University,Guangzhou Institute of Technology,Guangzhou,China – sequence: 5 givenname: Jing surname: Liu fullname: Liu, Jing email: neouma@mail.xidian.edu.cn organization: Xidian University,Guangzhou Institute of Technology,Guangzhou,China |
| BookMark | eNo1j8tOwzAQRY1EF1D6BwjlB1IyduzY3UVRSZEaZUPX1cQeF6PURcEg8feU1-pcncWR7jW7jKdIjN1BsQQozH2zbpSEslrygstvVQoAfsEWpjJaCJDiLPQVW3WUMO_6tl5lP3MknGKIh6x7H1PI--GFbAoflLUUKQWb1ePhNIX0fLxhM4_jGy3-OGe7h_VTs8m3ffvY1Ns8QKVTboxAJ6mU3kmLqAZdedSKa2cHQdxh6TwYbmyh0GpwnixJdaZzVvpBijm7_e0GItq_TuGI0-f-_5L4AsNiRjk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC65147.2025.11043112 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331534318 |
| EndPage | 4 |
| ExternalDocumentID | 11043112 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Research and Development funderid: 10.13039/100006190 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i178t-993ad5e45fd5caa6b87fa8628dcb3e2da4df1929c06ac81dfece561dfddc5fb53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539410900180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jul 02 05:55:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-993ad5e45fd5caa6b87fa8628dcb3e2da4df1929c06ac81dfece561dfddc5fb53 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_11043112 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-8 |
| PublicationDateYYYYMMDD | 2025-06-08 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-8 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 IEEE Congress on Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9111328 |
| Snippet | In the field of single objective optimization algorithms, learned evolutionary algorithms have achieved success in obtaining better performance than... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Evolutionary computation Evolutionary multi-objective optimization algorithms Genetic algorithms Meta-learning Metalearning Multi-objective optimization Multilayer perceptrons Optimization |
| Title | Meta-MOGA: Meta-learning Multi-Objective Genetic Algorithm |
| URI | https://ieeexplore.ieee.org/document/11043112 |
| WOSCitedRecordID | wos001539410900180&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgMhFCXauHClxhrfmYVb-pgOA3TXNK0u7GOhSXcNcC-1RtumTv1-L3SqceHCHSEkhEc45wLnHsbujHIKMKfYxOiUE78Frpy2HJpeC_TOtjCmzH-Uw6GaTPS4FKtHLQwixs9nWAvF-JYPS7cJV2V1girCu-ApvC9lvhVrlarfZkPXu71uTvgvKepLRW3X-JdtSkSN_tE_-ztm1R_9XTL-RpYTtoeLU9YeYGH4YHTfaSexWBo-zJIoouUj-7o9vJKQSpr2Q9J5my0p9n95r7Lnfu-p-8BL5wM-b0pVcCINBgRmwoNwxuRWSW8o9lAQJi8Fk4EnaqZdIzeOGKdHh0SEwAM44a1onbHKYrnAc5ZImwZvKqmEzTNpnIYMQ0r8FEF5D40LVg0Dn662yS2muzFf_lF_xQ7D9MbfUuqaVYr1Bm_Ygfss5h_r27gkX6Vgjxk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECammuhJjTW-3YNX-tguC_TWNK019nWoSW8NMEOt0a2pW3-_QLcaDx68EUJCZiDMN8A3HyF3ShgBmLrcRMmYOnwLVBipKdStZGiNbmAomd_nw6GYTuW4IKsHLgwihs9nWPHN8JYPS7P2V2VVF6pcvPOawrteOqugaxW833pNVtudduoQAHd5X8wq2-G_hFNC3Oge_nPGI1L-YeBF4-_Yckx2MDshzQHmig5G961mFJqF5MM8CjRaOtIvm-Mr8sWk3Y6IWq_zpcv-n9_K5KnbmbR7tNA-oIs6Fzl1sEEBw4RZYEapVAtulcs-BHj3xaASsA6cSVNLlXGY06JBB4XAAhhmNWucklK2zPCMRFzHXp2KC6bThCsjIUFfFD9GENZC7ZyUveGz9015i9nW5os_-m_Jfm8y6M_6D8PHS3LgXR3-TokrUspXa7wme-YzX3ysbsLyfAFL-JJi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Meta-MOGA%3A+Meta-learning+Multi-Objective+Genetic+Algorithm&rft.au=Li%2C+Tianyu&rft.au=Wu%2C+Kai&rft.au=Li%2C+Xiaobin&rft.au=Teng%2C+Xiangyi&rft.date=2025-06-08&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FCEC65147.2025.11043112&rft.externalDocID=11043112 |