SQL-GENIE: SQL Protection using GENerative Modeling for Anomaly Detection against Injection and Evolved Adversarial Attacks

In an age where data drives innovation and online interactions are integral to daily life, ensuring the security of web applications and databases has never been more critical. The growing surge and sophistication of large-scale SQL injection (SQLi) attacks highlight the urgent need for advanced det...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings : annual International Computer Software and Applications Conference s. 459 - 464
Hlavní autoři: Afrin, Sadia, Elsayed, Marwa A., Zincir-Heywood, Nur
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 08.07.2025
Témata:
ISSN:2836-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In an age where data drives innovation and online interactions are integral to daily life, ensuring the security of web applications and databases has never been more critical. The growing surge and sophistication of large-scale SQL injection (SQLi) attacks highlight the urgent need for advanced detection mechanisms to protect sensitive information, especially in cloud-based environments. This paper presents SQL-GENIE, a novel approach that leverages generative modeling to strengthen modern application security, improve anomaly detection, and address emerging challenges in data protection. SQL-GENIE leverages two feature embedding techniques across two different datasets and contrasts their performance against Generative Adversarial Networks (GAN)- under various contamination rates to analyze and detect SQLi attacks, including typical and sophisticated adversarial forms. Our proposed GAN model performs the best with FastText when applied to our benchmark dataset of typical SQLI, achieving F1-score of 92.7% on attack data with a 10% contamination rate. Additionally, it demonstrates an F1-score of 98.6% on the adversarial dataset, highlighting its robustness against evolved SQLi threats.
AbstractList In an age where data drives innovation and online interactions are integral to daily life, ensuring the security of web applications and databases has never been more critical. The growing surge and sophistication of large-scale SQL injection (SQLi) attacks highlight the urgent need for advanced detection mechanisms to protect sensitive information, especially in cloud-based environments. This paper presents SQL-GENIE, a novel approach that leverages generative modeling to strengthen modern application security, improve anomaly detection, and address emerging challenges in data protection. SQL-GENIE leverages two feature embedding techniques across two different datasets and contrasts their performance against Generative Adversarial Networks (GAN)- under various contamination rates to analyze and detect SQLi attacks, including typical and sophisticated adversarial forms. Our proposed GAN model performs the best with FastText when applied to our benchmark dataset of typical SQLI, achieving F1-score of 92.7% on attack data with a 10% contamination rate. Additionally, it demonstrates an F1-score of 98.6% on the adversarial dataset, highlighting its robustness against evolved SQLi threats.
Author Elsayed, Marwa A.
Zincir-Heywood, Nur
Afrin, Sadia
Author_xml – sequence: 1
  givenname: Sadia
  surname: Afrin
  fullname: Afrin, Sadia
  organization: Dalhousie University,Computer Science
– sequence: 2
  givenname: Marwa A.
  surname: Elsayed
  fullname: Elsayed, Marwa A.
  organization: Western University,Department of Computer Science
– sequence: 3
  givenname: Nur
  surname: Zincir-Heywood
  fullname: Zincir-Heywood, Nur
  email: zincir@cs.dal.ca
  organization: Dalhousie University,Faculty of Computer Science
BookMark eNo1jN9OwjAchavRRETewMS-wLBd_3u3zIkkIBj0mpTuN1IcndnqEuLLi1Guzsn3nZxrdBGaAAjdUTKmlJj7fDFfrrJcCkHUOCWpGBNCpDxDI6OMZowKxRkX52iQaiYTpoy4QtddtyOESS3SAfpevc6SSfEyLR7wseJl20Rw0TcBf3U-bPHRQWuj7wHPmxLqX1Y1Lc5Cs7f1AT_CaW-31ocu4mnYnUgocdE3dQ8lzsoe2s623tY4i9G6j-4GXVa27mD0n0P0_lS85c_JbDGZ5tks8VTpmBhaau6c4MQJ7VSlq1KSlGntpOOUUCXBGGmU5BtOSss4I3ZDN8K41IEFx4bo9u_XA8D6s_V72x7WlNJUKirZD4tZYTM
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/COMPSAC65507.2025.00066
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331574345
EISSN 2836-3795
EndPage 464
ExternalDocumentID 11126716
Genre orig-research
GroupedDBID 6IE
6IH
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i178t-91d84cc540c58c7f8fd602388c6c410176e9969764b40da3430ab1b59c2ceaec3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001575960000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 03 07:09:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-91d84cc540c58c7f8fd602388c6c410176e9969764b40da3430ab1b59c2ceaec3
PageCount 6
ParticipantIDs ieee_primary_11126716
PublicationCentury 2000
PublicationDate 2025-July-8
PublicationDateYYYYMMDD 2025-07-08
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-8
  day: 08
PublicationDecade 2020
PublicationTitle Proceedings : annual International Computer Software and Applications Conference
PublicationTitleAbbrev COMPSAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0036852
Score 1.9143093
Snippet In an age where data drives innovation and online interactions are integral to daily life, ensuring the security of web applications and databases has never...
SourceID ieee
SourceType Publisher
StartPage 459
SubjectTerms Adversarial Attack
Anomaly detection
Computational modeling
Contamination
Cybersecurity
Data models
Generative adversarial networks
Generative Modeling
Software
SQL injection
Surge protection
Surges
Technological innovation
Title SQL-GENIE: SQL Protection using GENerative Modeling for Anomaly Detection against Injection and Evolved Adversarial Attacks
URI https://ieeexplore.ieee.org/document/11126716
WOSCitedRecordID wos001575960000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6EePCED4zv9OB1ZZ9t1xvBRUkQMWjCjXSnhWB0MbCQGP-8ne6uevHgrWl306SPmWn7fd8QcimjqfQCyZyI-4FjPLTrpK6IHXzxAU-Brwp1_T4fDMR4HA9LsrrlwmitLfhMX2HRvuWrBazxqqzlId_FBPg1UuOcFWStyuyikLpfArg8N251Hu6Ho3aHoV6XOQb6eHXiohbiryQq1od0G__sfZc0f9h4dPjtZ_bIls72SaNKx0DL3XlAPkePfec2GfSSa2qK-E9ugVYZRXT7jJo2XQh9U0yBhkR0amJW2s4Wb_L1g97o6ns5k3MTN9Je9lLVZIomxpRttKI2ifNK4tKl7TxHln6TPHeTp86dU-ZWcOYeF7mxcUqEACZeg0gAn4qpYui-BTAIcZsybU5CJlYJ09BVMggDV6ZeGsXgg5YagkNSzxaZPiIUoeQq4lPup0EIqYyN__OYGwcgUl-G7Jg0cTAn74V8xqQax5M_6k_JDs6XxcSKM1LPl2t9TrZhk89Xyws76V9owqz5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGG8UTfSED4xve_A62XudN4JDiAMxYMKNdF87gtFhYJAY_3n7lU29ePDWdFuW9PV9bX8PQq65l3LL4b7hBbZjqAhtGonJQgNvfMASYIu1un4c9HpsNAr7BVldc2GklBp8Jm-wqO_yxQyWeFRWt5DvohL8TbKF1lkFXatceFFK3S4gXJYZ1puP3f6g0fRRsUttBG08PDFRDfGXjYqOIq3qP_-_R2o_fDza_440-2RDZgekWhoy0GJ-HpLPwVNs3Ee9TnRLVRG_yTXUKqOIb59Q9Uyupb4pmqAhFZ2qrJU2stkbf_2gd7J8n0_4VGWOtJO9lDWZoJFazFZSUG3jvOA4eGkjz5GnXyPPrWjYbBuFu4IxtQKWq1VOMBdAZWzgMQhSlgofAzgDH1ycqL5UeyGVrbiJawruuI7JEyvxQrBBcgnOEalks0weE4pgcuEFaWAnjgsJD1UEtHwzdIAlNnf9E1LDxhy_rwU0xmU7nv5Rf0V22sNuPI47vYczsot9pxGy7JxU8vlSXpBtWOXTxfxSD4Avl-2wQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%3A+annual+International+Computer+Software+and+Applications+Conference&rft.atitle=SQL-GENIE%3A+SQL+Protection+using+GENerative+Modeling+for+Anomaly+Detection+against+Injection+and+Evolved+Adversarial+Attacks&rft.au=Afrin%2C+Sadia&rft.au=Elsayed%2C+Marwa+A.&rft.au=Zincir-Heywood%2C+Nur&rft.date=2025-07-08&rft.pub=IEEE&rft.eissn=2836-3795&rft.spage=459&rft.epage=464&rft_id=info:doi/10.1109%2FCOMPSAC65507.2025.00066&rft.externalDocID=11126716