Towards Feasible Deep Learning Approach Using EEG for Neurodegenerative Diseases

In this study, we propose the phase space reconstruction (PSR)-based deep learning framework for enhanced detection of frontotemporal dementia (FTD) utilizing electroen-cephalography (EEG). Our experimental results demonstrate significant improvements over conventional screening methods, particularl...

Full description

Saved in:
Bibliographic Details
Published in:The ... International Winter Conference on Brain-Computer Interface pp. 1 - 5
Main Authors: Park, Dogeun, Kim, Ho-Jung, Ju, Young-Gi, Kim, Keun-Tae, Wont, Dong-Ok
Format: Conference Proceeding
Language:English
Published: IEEE 24.02.2025
Subjects:
ISSN:2572-7672
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we propose the phase space reconstruction (PSR)-based deep learning framework for enhanced detection of frontotemporal dementia (FTD) utilizing electroen-cephalography (EEG). Our experimental results demonstrate significant improvements over conventional screening methods, particularly the mini-mental state examination (MMSE), which exhibits a considerable false-negative rate of 39.1 % in FTD screening. The proposed framework achieved a remarkable 88.89 % accuracy in identifying previously misclassified FTD cases. The evaluation was conducted using a public dataset comprising 23 FTD patients and 29 healthy controls, wherein our framework consistently outperformed both traditional MMSE and the EEGNet-based approach. Through the integration of PSR techniques with advanced deep learning architectures, our findings suggest that EEG-based computational approaches could serve as robust complementary diagnostic tools in clinical FTD assessment protocols. These results underscore the potential of machine learning applications in enhancing the accuracy and reliability of neurological disorder diagnosis.
AbstractList In this study, we propose the phase space reconstruction (PSR)-based deep learning framework for enhanced detection of frontotemporal dementia (FTD) utilizing electroen-cephalography (EEG). Our experimental results demonstrate significant improvements over conventional screening methods, particularly the mini-mental state examination (MMSE), which exhibits a considerable false-negative rate of 39.1 % in FTD screening. The proposed framework achieved a remarkable 88.89 % accuracy in identifying previously misclassified FTD cases. The evaluation was conducted using a public dataset comprising 23 FTD patients and 29 healthy controls, wherein our framework consistently outperformed both traditional MMSE and the EEGNet-based approach. Through the integration of PSR techniques with advanced deep learning architectures, our findings suggest that EEG-based computational approaches could serve as robust complementary diagnostic tools in clinical FTD assessment protocols. These results underscore the potential of machine learning applications in enhancing the accuracy and reliability of neurological disorder diagnosis.
Author Kim, Ho-Jung
Wont, Dong-Ok
Park, Dogeun
Ju, Young-Gi
Kim, Keun-Tae
Author_xml – sequence: 1
  givenname: Dogeun
  surname: Park
  fullname: Park, Dogeun
  email: dogeun.park@hallym.ac.kr
  organization: Hallym University,Dept. Artificial Intelligence Convergence,Chuncheon,Republic of Korea
– sequence: 2
  givenname: Ho-Jung
  surname: Kim
  fullname: Kim, Ho-Jung
  email: hojungkim@hallym.ac.kr
  organization: Hallym University,Dept. Artificial Intelligence Convergence,Chuncheon,Republic of Korea
– sequence: 3
  givenname: Young-Gi
  surname: Ju
  fullname: Ju, Young-Gi
  email: younggi.ju@hallym.ac.kr
  organization: Hallym University,Dept. Artificial Intelligence Convergence,Chuncheon,Republic of Korea
– sequence: 4
  givenname: Keun-Tae
  surname: Kim
  fullname: Kim, Keun-Tae
  email: ktkim@hallym.ac.kr
  organization: Hallym University,Dept. Artificial Intelligence Convergence,Chuncheon,Republic of Korea
– sequence: 5
  givenname: Dong-Ok
  surname: Wont
  fullname: Wont, Dong-Ok
  email: dongok.won@hallym.ac.kr
  organization: Convergence and College of Medicine Hallym University,Dept. Artificial Intelligence,Chuncheon,Republic of Korea
BookMark eNo1kNFKAzEURKMoWGv_QCQ_sDU3d7NJHmtta6GoD-1zSdK7NVJ3l6Qq_r0r6tMwA3MY5pKdNW1DjN2AGAMIe3s3XVZKGDOWQqpxnyAgihM2stoaRFASrLSnbCCVloWutLxgo5xfhRAIxlpRDtjzuv10aZf5nFyO_kD8nqjjK3Kpic2eT7outS688E3-sbPZgtdt4o_0ntod7amh5I7xo6_F3BMoX7Hz2h0yjf50yDbz2Xr6UKyeFsvpZFVE0OZYGOcq028wpgSrK9j5UgfpsfKhRG-V97X2ECAIH9CQqgmDU1IKtCaAUjhk17_cSETbLsU3l762_yfgNwOmUg8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BCI65088.2025.10931330
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 9798331521929
EISSN 2572-7672
EndPage 5
ExternalDocumentID 10931330
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-8aa6889988419761db47c2b36bc43b95bbf7b1c1c0bc38e5fe3ca5220398c1553
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471781800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Apr 02 05:44:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-8aa6889988419761db47c2b36bc43b95bbf7b1c1c0bc38e5fe3ca5220398c1553
PageCount 5
ParticipantIDs ieee_primary_10931330
PublicationCentury 2000
PublicationDate 2025-Feb.-24
PublicationDateYYYYMMDD 2025-02-24
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-24
  day: 24
PublicationDecade 2020
PublicationTitle The ... International Winter Conference on Brain-Computer Interface
PublicationTitleAbbrev BCI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189904
Score 1.9002631
Snippet In this study, we propose the phase space reconstruction (PSR)-based deep learning framework for enhanced detection of frontotemporal dementia (FTD) utilizing...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Brain-computer interfaces
Deep learning
Dementia
EEG
Electroencephalography
false- negative
frontotemporal dementia
MMSE
Neurological diseases
phase-space reconstruction
Protocols
Reliability
Title Towards Feasible Deep Learning Approach Using EEG for Neurodegenerative Diseases
URI https://ieeexplore.ieee.org/document/10931330
WOSCitedRecordID wos001471781800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmDi0SLe8oDY0saxEztj6QNYqg5F6lbFzqWqBGnVBxL_nvM1LWJgYLMiW5Fsy_6-833fMfbg4khZhA5BEkoVIL51gQ0zL84Ji9AmaeFMQcUm9GBgxuN0WInVSQsDAJR8Bk3fpLf8fO42PlTW8tZHyKmQoR9qrbdirX1ABTcnnqyqUgFj19ZT55XwB7LAKG7uBv8qo0K3SP_kn_8_ZY0fPR4f7m-aM3YA5Tmrt0skzB9f_JFTGifFx-tsOKJE2BVHcIfb_R14F2DBKx_VKW9XJuKckgV4r_fMEbdyMunIYUou1P4I5N3t082qwd76vVHnJajKJgQzoc06MFmWGE-jjBIINkRulXaRlYl1Sto0trbQVjjhQuukgbgA6TKEYaFMjfNlhC5YrZyXcMl4pjMBItepAamMjaxBgBIVOQ6MPNi6Yg0_S5PF1hljspug6z--37BjvxYkCVe3rLZebuCOHbnP9Wy1vKf1_AYNk5-U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1SBV35aMW3WYi7aSePmcksax-2WEsXFbork8ydUtBp6UPw771JpxUXLtyFIYEhCck5N_ecS8iDCbjUCB280BfSQ3xrPO0nVpzjZ74O48yozBWbiPp9NRrFg0Ks7rQwAOCSz6Bqm-4tP52ZtQ2V1az1EXIqZOj7gZScbeRau5AKbk88W2WhA8bOtadG1yEQ5IE8qG6H_yqk4u6R9vE__-CEVH4UeXSwu2tOyR7kZ6Rcz5Eyf3zRR-oSOV2EvEwGQ5cKu6QI73DDvwNtAsxp4aQ6ofXCRpy6dAHaaj1TRK7U2XSkMHE-1PYQpM3N482yQt7arWGj4xWFE7wpi9TKU0kSKkuklGQIN1iqZWS4FqE2Uug40DqLNDPM-NoIBUEGwiQIxHwRK2MLCZ2TUj7L4YLQJEoYsDSKFQipNNcKIQrPUhzILdy6JBU7S-P5xhtjvJ2gqz--35PDzvC1N-51-y_X5MiuixOIyxtSWi3WcEsOzOdqulzcubX9BosHots
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+International+Winter+Conference+on+Brain-Computer+Interface&rft.atitle=Towards+Feasible+Deep+Learning+Approach+Using+EEG+for+Neurodegenerative+Diseases&rft.au=Park%2C+Dogeun&rft.au=Kim%2C+Ho-Jung&rft.au=Ju%2C+Young-Gi&rft.au=Kim%2C+Keun-Tae&rft.date=2025-02-24&rft.pub=IEEE&rft.eissn=2572-7672&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBCI65088.2025.10931330&rft.externalDocID=10931330