Enhancing Dynamic Constrained Multiobjective Optimization With Multicenters-Based Prediction

Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes challenge most existing algorithms to quickly cross infeasible regions and accurately track the changing Pareto optimal set (POS) and Pareto optim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 29; no. 5; pp. 1604 - 1618
Main Authors: Gong, Quan, Xia, Yizhang, Zou, Juan, Hou, Zhanglu, Liu, Yuan
Format: Journal Article
Language:English
Published: IEEE 01.10.2025
Subjects:
ISSN:1089-778X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes challenge most existing algorithms to quickly cross infeasible regions and accurately track the changing Pareto optimal set (POS) and Pareto optimal front (POF). To address this issue, this article presents a multicenters-based prediction strategy, termed FCP, for solving DCMOPs more effectively. First, we introduce a penalty function to cluster the historical optimal solutions, thereby obtaining multicenters of these solutions. These centers can roughly represent the distribution of different clusters in POS. Then, we predict cluster centers of the new environment's POS by calculating the distance of centers from the preceding two environments. The prediction strategy can handle the change of POS caused by constraints thereby improving the accuracy of prediction. Finally, a proposed population generator calculates the distances between new centers and utilizes information from these centers to predict a well-distributed initial population. Comprehensive studies on widely used benchmark problems demonstrate that our proposed algorithm is very competitive in dealing with DCMOPs compared with seven state-of-the-art algorithms. Meanwhile, to validate the proposed prediction strategy, it is embedded into the static constraints handling techniques from other DCMOEAs to solving DCMOPs and the experimental results indicate that FCP is superior in generating initial population.
AbstractList Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes challenge most existing algorithms to quickly cross infeasible regions and accurately track the changing Pareto optimal set (POS) and Pareto optimal front (POF). To address this issue, this article presents a multicenters-based prediction strategy, termed FCP, for solving DCMOPs more effectively. First, we introduce a penalty function to cluster the historical optimal solutions, thereby obtaining multicenters of these solutions. These centers can roughly represent the distribution of different clusters in POS. Then, we predict cluster centers of the new environment's POS by calculating the distance of centers from the preceding two environments. The prediction strategy can handle the change of POS caused by constraints thereby improving the accuracy of prediction. Finally, a proposed population generator calculates the distances between new centers and utilizes information from these centers to predict a well-distributed initial population. Comprehensive studies on widely used benchmark problems demonstrate that our proposed algorithm is very competitive in dealing with DCMOPs compared with seven state-of-the-art algorithms. Meanwhile, to validate the proposed prediction strategy, it is embedded into the static constraints handling techniques from other DCMOEAs to solving DCMOPs and the experimental results indicate that FCP is superior in generating initial population.
Author Xia, Yizhang
Liu, Yuan
Gong, Quan
Zou, Juan
Hou, Zhanglu
Author_xml – sequence: 1
  givenname: Quan
  orcidid: 0009-0003-0799-559X
  surname: Gong
  fullname: Gong, Quan
  email: 202321633023@smail.xtu.edu.cn
  organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China
– sequence: 2
  givenname: Yizhang
  orcidid: 0009-0007-5377-0286
  surname: Xia
  fullname: Xia, Yizhang
  email: yizhangxia@xtu.edu.cn
  organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China
– sequence: 3
  givenname: Juan
  orcidid: 0000-0001-5115-4040
  surname: Zou
  fullname: Zou, Juan
  email: zoujuan@xtu.edu.cn
  organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China
– sequence: 4
  givenname: Zhanglu
  orcidid: 0000-0003-4269-8833
  surname: Hou
  fullname: Hou, Zhanglu
  email: ahou.amstrong@gmail.com
  organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China
– sequence: 5
  givenname: Yuan
  orcidid: 0000-0002-2576-7836
  surname: Liu
  fullname: Liu, Yuan
  email: liu3yuan@xtu.edu.cn
  organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China
BookMark eNotkMtOwzAURL0oEm3hA5BY5AcSfO04tpcQwkMqKovyWCBVjn1DXTVOlRik8vUEldVIo3NmMTMyCV1AQi6AZgBUX62q1zJjlImMCwFc6wmZAlU6lVK9n5LZMGwphVyAnpKPKmxMsD58JreHYFpvk7ILQ-yND-iSp69d9F29RRv9NybLffSt_zFjF5I3HzdHwGKI2A_pjRlG57lH5-0fckZOGrMb8Pw_5-TlrlqVD-lief9YXi9SD1LFVOU11UoypnLqbCGw0bmFHNDpWlvnuKUopWCWM0DgjQbUpuBGIytQiIbPyeVx1yPiet_71vSH9XgFK4Qo-C_c31QY
CODEN ITEVF5
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/TEVC.2025.3551399
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 1618
ExternalDocumentID 10926556
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62276224; 62302425
  funderid: 10.13039/501100001809
– fundername: Hunan Provincial Innovation Foundation for Postgraduate, China
  grantid: CX20230552
  funderid: 10.13039/501100010083
– fundername: Education Department Project of Hunan Province, China
  grantid: 23C0046; 23B0151
  funderid: 10.13039/100009377
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ID FETCH-LOGICAL-i178t-84b098722840dc65ef94c141ed9b9cdd3c0e7752c321e13f91e9a63a9e26e55f3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592260400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Oct 25 03:12:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-84b098722840dc65ef94c141ed9b9cdd3c0e7752c321e13f91e9a63a9e26e55f3
ORCID 0000-0001-5115-4040
0000-0002-2576-7836
0009-0003-0799-559X
0000-0003-4269-8833
0009-0007-5377-0286
PageCount 15
ParticipantIDs ieee_primary_10926556
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.5166779
Snippet Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes...
SourceID ieee
SourceType Publisher
StartPage 1604
SubjectTerms Constraint handling
Convergence
Dynamic constrained multiobjective optimization
Dynamic response
Evolutionary computation
Heuristic algorithms
Linear programming
multiobjective optimization problems (MOPs)
Optical fibers
Optimization
Pareto optimization
Prediction algorithms
prediction strategy
Title Enhancing Dynamic Constrained Multiobjective Optimization With Multicenters-Based Prediction
URI https://ieeexplore.ieee.org/document/10926556
Volume 29
WOSCitedRecordID wos001592260400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014519
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQADhVLEtzywpsR2_DVCacVUOhTogFQltgNFIkWl5ffjs1PUhYEtshwp8un87Ny79xC6YrqwqrQ0AXRIMpXmiTbW55W2QGvwGCNsMJuQw6GaTPSoblYPvTDOuUA-c114DLV8Ozcr-FXmM1xTwblooIaUIjZr_ZYMQCclsum1PzKqSV3C9O9cj_tPPX8VpLzLwM8EdF43rFQCkgxa__yGfbRXHxnxTYzxAdpyVRu11nYMuM7ONtrd0BY8RC_96g20NKpXfBdd5zGYcwZLCGdxaLydF-9xv8MPfuf4qFsy8fNs-RYnAHUTGPO3HussHi2gqgNTOuhx0B_37pPaSiGZEamWicqKVCtJPRil1gjuSp0ZkhFndeFjY5lJnZScGkaJI6zUxOlcsFw7KhznJTtCzWpeuWOESSE0BZ14WYqsMCRPM2ZkrgxPrSoYPUEdWLXpZ1TLmK4X7PSP8TO0A6GJBLlz1FwuVu4CbZvv5exrcRli_AMOqab2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTdSD-APjb3vwOlzbtWuPihCMiBxQOZiQre0EE4dB8O-3rxuGiwdvS9MlS19ev3bve9-H0CVTqZGZoQGgQxDJMAmUNi6vlAFag8MYYbzZRNztysFA9cpmdd8LY6315DNbh0dfyzcTPYdfZS7DFRWci1W0BtZZvGjX-i0agFJKwadX7tAoB2UR07111W8-N9xlkPI6A0cTUHpdMlPxWNKq_vMrdtB2eWjE10WUd9GKzfdQdWHIgMv83ENbS-qC--i1mY9ATSN_w7eF7zwGe05vCmEN9q23k_S92PHwo9s7PsqmTPwyno2KCUDeBM78jUM7g3tTqOvAlBp6ajX7jXZQmikEYxLLWSCjNFQypg6OQqMFt5mKNImINSp10TFMhzaOOdWMEktYpohViWCJslRYzjN2gCr5JLeHCJNUKApK8XEmolSTJIyYjhOpeWhkyugRqsGqDT8LvYzhYsGO_xi_QBvt_kNn2Lnr3p-gTQhTQZc7RZXZdG7P0Lr-no2_puc-3j_0JKpB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Dynamic+Constrained+Multiobjective+Optimization+With+Multicenters-Based+Prediction&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Gong%2C+Quan&rft.au=Xia%2C+Yizhang&rft.au=Zou%2C+Juan&rft.au=Hou%2C+Zhanglu&rft.date=2025-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=5&rft.spage=1604&rft.epage=1618&rft_id=info:doi/10.1109%2FTEVC.2025.3551399&rft.externalDocID=10926556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon