Enhancing Dynamic Constrained Multiobjective Optimization With Multicenters-Based Prediction
Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes challenge most existing algorithms to quickly cross infeasible regions and accurately track the changing Pareto optimal set (POS) and Pareto optim...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 29; číslo 5; s. 1604 - 1618 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2025
|
| Témata: | |
| ISSN: | 1089-778X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes challenge most existing algorithms to quickly cross infeasible regions and accurately track the changing Pareto optimal set (POS) and Pareto optimal front (POF). To address this issue, this article presents a multicenters-based prediction strategy, termed FCP, for solving DCMOPs more effectively. First, we introduce a penalty function to cluster the historical optimal solutions, thereby obtaining multicenters of these solutions. These centers can roughly represent the distribution of different clusters in POS. Then, we predict cluster centers of the new environment's POS by calculating the distance of centers from the preceding two environments. The prediction strategy can handle the change of POS caused by constraints thereby improving the accuracy of prediction. Finally, a proposed population generator calculates the distances between new centers and utilizes information from these centers to predict a well-distributed initial population. Comprehensive studies on widely used benchmark problems demonstrate that our proposed algorithm is very competitive in dealing with DCMOPs compared with seven state-of-the-art algorithms. Meanwhile, to validate the proposed prediction strategy, it is embedded into the static constraints handling techniques from other DCMOEAs to solving DCMOPs and the experimental results indicate that FCP is superior in generating initial population. |
|---|---|
| AbstractList | Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes challenge most existing algorithms to quickly cross infeasible regions and accurately track the changing Pareto optimal set (POS) and Pareto optimal front (POF). To address this issue, this article presents a multicenters-based prediction strategy, termed FCP, for solving DCMOPs more effectively. First, we introduce a penalty function to cluster the historical optimal solutions, thereby obtaining multicenters of these solutions. These centers can roughly represent the distribution of different clusters in POS. Then, we predict cluster centers of the new environment's POS by calculating the distance of centers from the preceding two environments. The prediction strategy can handle the change of POS caused by constraints thereby improving the accuracy of prediction. Finally, a proposed population generator calculates the distances between new centers and utilizes information from these centers to predict a well-distributed initial population. Comprehensive studies on widely used benchmark problems demonstrate that our proposed algorithm is very competitive in dealing with DCMOPs compared with seven state-of-the-art algorithms. Meanwhile, to validate the proposed prediction strategy, it is embedded into the static constraints handling techniques from other DCMOEAs to solving DCMOPs and the experimental results indicate that FCP is superior in generating initial population. |
| Author | Xia, Yizhang Liu, Yuan Gong, Quan Zou, Juan Hou, Zhanglu |
| Author_xml | – sequence: 1 givenname: Quan orcidid: 0009-0003-0799-559X surname: Gong fullname: Gong, Quan email: 202321633023@smail.xtu.edu.cn organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China – sequence: 2 givenname: Yizhang orcidid: 0009-0007-5377-0286 surname: Xia fullname: Xia, Yizhang email: yizhangxia@xtu.edu.cn organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China – sequence: 3 givenname: Juan orcidid: 0000-0001-5115-4040 surname: Zou fullname: Zou, Juan email: zoujuan@xtu.edu.cn organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China – sequence: 4 givenname: Zhanglu orcidid: 0000-0003-4269-8833 surname: Hou fullname: Hou, Zhanglu email: ahou.amstrong@gmail.com organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China – sequence: 5 givenname: Yuan orcidid: 0000-0002-2576-7836 surname: Liu fullname: Liu, Yuan email: liu3yuan@xtu.edu.cn organization: Hunan Engineering Research Center of Intelligent System Optimization and Security, Xiangtan University, Xiangtan, Hunan, China |
| BookMark | eNotkMtOwzAURL0oEm3hA5BY5AcSfO04tpcQwkMqKovyWCBVjn1DXTVOlRik8vUEldVIo3NmMTMyCV1AQi6AZgBUX62q1zJjlImMCwFc6wmZAlU6lVK9n5LZMGwphVyAnpKPKmxMsD58JreHYFpvk7ILQ-yND-iSp69d9F29RRv9NybLffSt_zFjF5I3HzdHwGKI2A_pjRlG57lH5-0fckZOGrMb8Pw_5-TlrlqVD-lief9YXi9SD1LFVOU11UoypnLqbCGw0bmFHNDpWlvnuKUopWCWM0DgjQbUpuBGIytQiIbPyeVx1yPiet_71vSH9XgFK4Qo-C_c31QY |
| CODEN | ITEVF5 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE |
| DOI | 10.1109/TEVC.2025.3551399 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EndPage | 1618 |
| ExternalDocumentID | 10926556 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62276224; 62302425 funderid: 10.13039/501100001809 – fundername: Hunan Provincial Innovation Foundation for Postgraduate, China grantid: CX20230552 funderid: 10.13039/501100010083 – fundername: Education Department Project of Hunan Province, China grantid: 23C0046; 23B0151 funderid: 10.13039/100009377 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 |
| ID | FETCH-LOGICAL-i178t-84b098722840dc65ef94c141ed9b9cdd3c0e7752c321e13f91e9a63a9e26e55f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592260400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Oct 25 03:12:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-84b098722840dc65ef94c141ed9b9cdd3c0e7752c321e13f91e9a63a9e26e55f3 |
| ORCID | 0000-0001-5115-4040 0000-0002-2576-7836 0009-0003-0799-559X 0000-0003-4269-8833 0009-0007-5377-0286 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10926556 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014519 |
| Score | 2.516607 |
| Snippet | Dynamic constrained multiobjective optimization problems (DCMOPs) involve complex changes in objective functions and constraints over time. These changes... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1604 |
| SubjectTerms | Constraint handling Convergence Dynamic constrained multiobjective optimization Dynamic response Evolutionary computation Heuristic algorithms Linear programming multiobjective optimization problems (MOPs) Optical fibers Optimization Pareto optimization Prediction algorithms prediction strategy |
| Title | Enhancing Dynamic Constrained Multiobjective Optimization With Multicenters-Based Prediction |
| URI | https://ieeexplore.ieee.org/document/10926556 |
| Volume | 29 |
| WOSCitedRecordID | wos001592260400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1089-778X databaseCode: RIE dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014519 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADhVLEWx5YUxo7fo1QWjGVDgU6IFVxfIYikaKS8vvxI0VdGNiiyJYin-w7574HQldCaZNapRJDiE4yATrJOdWJKxZknllKuc2C2YQYjeR0qsY1WT1wYQAggM-g6x9DL98sipX_VeZ2uCKcMd5ADSF4JGv9tgy8TkpE0ytXMspp3cJ0c64ng6e-uwoS1qXez8TrvG5YqYRMMmz98xv20V5dMuKbGOMDtAVlG7XWdgy43p1ttLuhLXiIXgblm9fSKF_xXXSdx96cM1hCgMGBeLvQ7_G8ww_u5PioKZn4eV69xQEeuukR87cu1xk8Xvqujh_SQY_DwaR_n9RWCsk8FbJKZKZ7SgriklHPFJyBVVmRZikYpVVhDC16IAQjBSUppNSqFJSLWa6AcGDM0iPULBclHCPMLLNKy1xylWcmd9cN7i3Uc62hJ1xBdYI6ftVmn1EtY7ZesNM_3p-hHR-aCJA7R81quYILtF18V_Ov5WWI8Q9hlqfF |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTdSD-IHx2x68Dlm3tntHRQhGRA6oHEzIur4JJg6Dw7_fdh2Giwdvy9ImS1_a97r3-yDkUoLSfgrgacaUF0pUXiwC5ZliIYrDNAhEGhZmE7LXi4ZD6Jdk9YILg4gF-Azr9rHo5etpMre_yswOByY4F6tkzVpngaNr_TYNrFKKw9ODKRqjYdnENLOuBq3nprkMMl4PrKOJVXpdMlMpckm7-s-v2CHbZdFIr12Ud8kKZnukujBkoOX-3CNbS-qC--S1lY2tmkb2Rm-d7zy19pyFKQRqWlBvp-rdnXj00ZwdHyUpk75M8rEbYMGbFjN_Y7Kdpv2Z7evYITXy1G4Nmh2vNFPwJr6Mci8KVQMiyUw6auhEcEwhTPzQRw0KEq2DpIFScpYEzEc_SMFHMFGLAZlAztPggFSyaYaHhPKUp6CiOBIQhzo2Fw5hTdRjpbAhTUl1RGp21UafTi9jtFiw4z_eX5CNzuChO-re9e5PyKYNk4PLnZJKPpvjGVlPvvPJ1-y8iPcPWb6rFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Dynamic+Constrained+Multiobjective+Optimization+With+Multicenters-Based+Prediction&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Gong%2C+Quan&rft.au=Xia%2C+Yizhang&rft.au=Zou%2C+Juan&rft.au=Hou%2C+Zhanglu&rft.date=2025-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=5&rft.spage=1604&rft.epage=1618&rft_id=info:doi/10.1109%2FTEVC.2025.3551399&rft.externalDocID=10926556 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |