High-Performance Computing-Driven Gene Co-Expression Network Analysis for Biomarkers Discovery in Soft Tissue Sarcomas

Soft tissue sarcomas (STS), such as leiomyosarcoma (LMS) and malignant peripheral nerve sheath tumors (MPNST), are aggressive neoplasms with limited treatment alternatives. Comprehending their biological mechanisms requires the examination of gene expression data, provides insights into transcriptio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / IEEE International Symposium on Computer-Based Medical Systems S. 234 - 239
Hauptverfasser: Cadenas, Marc Rios, Lopez-Fernandez, Aurelio, Gomez-Vela, Francisco A., Ortega, Juan A., Perez, Inmaculada Rincon
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 18.06.2025
Schlagworte:
ISSN:2372-9198
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Soft tissue sarcomas (STS), such as leiomyosarcoma (LMS) and malignant peripheral nerve sheath tumors (MPNST), are aggressive neoplasms with limited treatment alternatives. Comprehending their biological mechanisms requires the examination of gene expression data, provides insights into transcriptional activity. Gene co-expression networks (GCNs) are essential for elucidating functional gene linkages within datasets, depicting genes as nodes and their interactions as edges. Such methods are typically employed for the discovery of potential biomarkers. However, the computational performance for analysing huge genomic datasets requires High-Performance Computing (HPC) technologies, such as GPGPU and distributed computing models, to improve scalability and efficiency. This study uses HPC-based GCN techniques to uncover potential biomarkers associated with the aggressiveness of LMS and MPNST. Through the comparison of co-expression networks from malignant tumor tissues and their normal or benign counterparts, we identify genes exhibiting differential expression patterns that may facilitate sarcoma growth. As a result, six potential biomarkers were identified in the study. This holistic approach improves our comprehension of STS biology while providing novel tools for biomarker identification and prospective therapeutic targeting.
AbstractList Soft tissue sarcomas (STS), such as leiomyosarcoma (LMS) and malignant peripheral nerve sheath tumors (MPNST), are aggressive neoplasms with limited treatment alternatives. Comprehending their biological mechanisms requires the examination of gene expression data, provides insights into transcriptional activity. Gene co-expression networks (GCNs) are essential for elucidating functional gene linkages within datasets, depicting genes as nodes and their interactions as edges. Such methods are typically employed for the discovery of potential biomarkers. However, the computational performance for analysing huge genomic datasets requires High-Performance Computing (HPC) technologies, such as GPGPU and distributed computing models, to improve scalability and efficiency. This study uses HPC-based GCN techniques to uncover potential biomarkers associated with the aggressiveness of LMS and MPNST. Through the comparison of co-expression networks from malignant tumor tissues and their normal or benign counterparts, we identify genes exhibiting differential expression patterns that may facilitate sarcoma growth. As a result, six potential biomarkers were identified in the study. This holistic approach improves our comprehension of STS biology while providing novel tools for biomarker identification and prospective therapeutic targeting.
Author Cadenas, Marc Rios
Lopez-Fernandez, Aurelio
Gomez-Vela, Francisco A.
Perez, Inmaculada Rincon
Ortega, Juan A.
Author_xml – sequence: 1
  givenname: Marc Rios
  orcidid: 0009-0002-8400-0114
  surname: Cadenas
  fullname: Cadenas, Marc Rios
  organization: Universidad Pablo de Olavide,Intelligent Data Analysis Group (DATAi),Seville,Spain,ES-41013
– sequence: 2
  givenname: Aurelio
  orcidid: 0000-0001-5986-5437
  surname: Lopez-Fernandez
  fullname: Lopez-Fernandez, Aurelio
  organization: University of Seville,Computer Science Department,Seville,Spain,ES-41012
– sequence: 3
  givenname: Francisco A.
  orcidid: 0000-0001-7376-5790
  surname: Gomez-Vela
  fullname: Gomez-Vela, Francisco A.
  organization: Universidad Pablo de Olavide,Intelligent Data Analysis Group (DATAi),Seville,Spain,ES-41013
– sequence: 4
  givenname: Juan A.
  orcidid: 0000-0001-9095-7241
  surname: Ortega
  fullname: Ortega, Juan A.
  organization: University of Seville,Computer Science Department,Seville,Spain,ES-41012
– sequence: 5
  givenname: Inmaculada Rincon
  orcidid: 0009-0002-8971-0369
  surname: Perez
  fullname: Perez, Inmaculada Rincon
  organization: University Hospital Virgen del Rocio,Department of Radiation Oncology,Seville,Spain,ES-41013
BookMark eNotUMtOAjEUrUYTAfkDFv2BYh902lnCgGCCjwRck85wixVoSTuM8veO0dVJzisnp4tufPCA0IDRIWM0fygmz6tMipEecsrlkFIq5RXq5yrXQjDJM0b1NepwoTjJWa7vUDelz9bVirKDmoXbfZA3iDbEo_EV4CIcT-fa-R2ZRteAx3PwvyyZfZ8ipOSCxy9Qf4W4x2NvDpfkEm7TeOLC0cQ9xISnLlWhgXjBzuNVsDVeu5TOgFcmVq0r3aNbaw4J-v_YQ--Ps3WxIMvX-VMxXhLHlK6JUlJREAy0NdwyndlS8ZHVTFmbCZ2VpTFW8S0XW6klLYGPjMyybWW5kVZb0UODv14HAJtTdO3Cy6Y9TmqdM_EDxZFgiQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CBMS65348.2025.00055
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9798331526108
EISSN 2372-9198
EndPage 239
ExternalDocumentID 11058891
Genre orig-research
GroupedDBID 29F
6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i178t-77570e31e8fa2f186fb724f817ff6386bbaaf72d23d5850be24a566dcf2a5f8f3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544273800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jul 10 06:33:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-77570e31e8fa2f186fb724f817ff6386bbaaf72d23d5850be24a566dcf2a5f8f3
ORCID 0000-0001-5986-5437
0009-0002-8971-0369
0009-0002-8400-0114
0000-0001-9095-7241
0000-0001-7376-5790
PageCount 6
ParticipantIDs ieee_primary_11058891
PublicationCentury 2000
PublicationDate 2025-June-18
PublicationDateYYYYMMDD 2025-06-18
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-18
  day: 18
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Symposium on Computer-Based Medical Systems
PublicationTitleAbbrev CBMS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053155
Score 2.2945182
Snippet Soft tissue sarcomas (STS), such as leiomyosarcoma (LMS) and malignant peripheral nerve sheath tumors (MPNST), are aggressive neoplasms with limited treatment...
SourceID ieee
SourceType Publisher
StartPage 234
SubjectTerms Bioinformatics
Biomarkers
Computational modeling
Gene co-expression network
High performance computing
Malignant tumors
Medical diagnostic imaging
Neoplasms
Network analyzers
Regulation
Sarcoma
Scalability
Title High-Performance Computing-Driven Gene Co-Expression Network Analysis for Biomarkers Discovery in Soft Tissue Sarcomas
URI https://ieeexplore.ieee.org/document/11058891
WOSCitedRecordID wos001544273800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctqBBi4lXEWx5YTRPHjp21D8RAq0otqFsVJ2cpAylKH4Jvz9lJKQsDW2QliuSL7y72739HyIOKc5FwACYwJ2LCBpqlMg-YjiDIMCQa45H_txc1GunZLBk3YnWvhQEAD5_Bo7v0Z_n5Ilu7rbIOhiqptdOq7yularHW1u3ityRlo40Lg6TT6w4nsYw8vsXdvkng1Hy_Oqj4APJ0_M9Xn5D2TopHxz9B5pTsQXlGDofNifg52ThQg413-D-t-zTgzaxfOVdGXWVpHGWDzwZ6Lemohr_ptiQJxadpt1i8O1inWtJ-scwc2_lFi5JO0FPTqTcQneC6cERRm7w-Daa9Z9b0UmBFqPQKk2ipAohC0DblNtSxNYoLq0NlLS7B2Jg0tYrnPMrxByIwwEWKmV6eWZ5Kq210QVrlooRLQgFzygTiWIHQwiSp1hZEjmlcjLmONNkVabv5m3_U5TLm26m7_mP8hhw5Ezn-KtS3pLWq1nBHDrLNqlhW997I37rkqiI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQcDEq4g3HlhNE8eOnbWlVRFtVKkFdavi5CxlIEXpQ_DvsZ2UsjCwRVasSD7f3Rf7--4QehBhxiIKQJjBRIRpT5KEZx6RAXipSYlKOcr_20DEsZxOo1EtVndaGABw5DN4tI_uLj-bpyt7VNYyqYpLabXqu5wx6ldyrU3gNbuJ81od53tRq9MejkMeOAIXtScnntXz_eqh4lJI7-ifHz9Gza0YD49-0swJ2oHiFO0P6zvxM7S2VA0y2goAcNWpwbxMnkobzLCtLW1GSfezpr0WOK7o33hTlASb2bidz98tXadc4Kd8kVp25xfOCzw2sRpPnInw2HiG5RQ10WuvO-n0Sd1NgeS-kEsDo7nwIPBB6oRqX4ZaCcq09IXWxglDpZJEC5rRIDO_EJ4CyhKD9bJU04RrqYNz1CjmBVwgDAZVRhCGAphkKkqk1MAyA-RCg3a4Si9R067f7KMqmDHbLN3VH-P36KA_GQ5mg-f45RodWnNZNpYvb1BjWa7gFu2l62W-KO-cwb8BvvitaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Computer-Based+Medical+Systems&rft.atitle=High-Performance+Computing-Driven+Gene+Co-Expression+Network+Analysis+for+Biomarkers+Discovery+in+Soft+Tissue+Sarcomas&rft.au=Cadenas%2C+Marc+Rios&rft.au=Lopez-Fernandez%2C+Aurelio&rft.au=Gomez-Vela%2C+Francisco+A.&rft.au=Ortega%2C+Juan+A.&rft.date=2025-06-18&rft.pub=IEEE&rft.eissn=2372-9198&rft.spage=234&rft.epage=239&rft_id=info:doi/10.1109%2FCBMS65348.2025.00055&rft.externalDocID=11058891