MARCER: Multimodal Augmented Reality for Composing and Executing Robot Tasks
In this work, we combine the strengths of humans and robots by developing MARCER, a novel interactive and multimodal end-user robot programming system. MARCER utilizes a Large Language Model to translate users' natural language task descriptions and environmental context into Action Plans for r...
Uloženo v:
| Vydáno v: | 2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI) s. 529 - 539 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
04.03.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we combine the strengths of humans and robots by developing MARCER, a novel interactive and multimodal end-user robot programming system. MARCER utilizes a Large Language Model to translate users' natural language task descriptions and environmental context into Action Plans for robot execution, based on a trigger-action programming paradigm that facilitates authoring reactive robot behaviors. MARCER also affords interaction via augmented reality to help users parameterize and validate robot programs and provide real-time, visual previews and feedback directly in the context of the robot's operating environment. We present the design, implementation, and evaluation of MARCER to explore the usability of such systems and demonstrate how trigger-action programming, Large Language Models, and augmented reality hold deep-seated synergies that, when combined, empower users to program general-purpose robots to perform everyday tasks. |
|---|---|
| AbstractList | In this work, we combine the strengths of humans and robots by developing MARCER, a novel interactive and multimodal end-user robot programming system. MARCER utilizes a Large Language Model to translate users' natural language task descriptions and environmental context into Action Plans for robot execution, based on a trigger-action programming paradigm that facilitates authoring reactive robot behaviors. MARCER also affords interaction via augmented reality to help users parameterize and validate robot programs and provide real-time, visual previews and feedback directly in the context of the robot's operating environment. We present the design, implementation, and evaluation of MARCER to explore the usability of such systems and demonstrate how trigger-action programming, Large Language Models, and augmented reality hold deep-seated synergies that, when combined, empower users to program general-purpose robots to perform everyday tasks. |
| Author | Szafir, Daniel Gramopadhye, Maitrey Nekervis, LillyAnn Ikeda, Bryce |
| Author_xml | – sequence: 1 givenname: Bryce surname: Ikeda fullname: Ikeda, Bryce email: bikeda@cs.unc.edu organization: University of North Carolina at Chapel Hill,Department of Computer Science,Chapel Hill,NC,USA – sequence: 2 givenname: Maitrey surname: Gramopadhye fullname: Gramopadhye, Maitrey email: maitrey@cs.unc.edu organization: University of North Carolina at Chapel Hill,Department of Computer Science,Chapel Hill,NC,USA – sequence: 3 givenname: LillyAnn surname: Nekervis fullname: Nekervis, LillyAnn email: lnekervis@unc.edu organization: University of North Carolina at Chapel Hill,Department of Computer Science,Chapel Hill,NC,USA – sequence: 4 givenname: Daniel surname: Szafir fullname: Szafir, Daniel email: daniel.szafir@cs.unc.edu organization: University of North Carolina at Chapel Hill,Department of Computer Science,Chapel Hill,NC,USA |
| BookMark | eNo1j99KwzAcRiPohc69gUheoDN_miXxrpTqBh1CmdcjTX4ZwbYZbQru7Z04rw7fufjgPKDbIQ6A0DMlK0qJftk02zUVhKwYYWJ1MTJnnN2gpZZacUG4VJrTe1Tviqasmle8m7sU-uhMh4v52MOQwOEGTBfSGfs44jL2pziF4YjN4HD1DXZOv6uJbUx4b6av6RHdedNNsLxygT7fqn25yeqP921Z1FmgUqVsLSlTbesIb70QRkCrBafWKkedFUCcppxZZ73KQVNjBJHMS3HxXPtcOr5AT3-_AQAOpzH0Zjwf_iP5D6lrS6Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/HRI61500.2025.10974232 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350378931 |
| EndPage | 539 |
| ExternalDocumentID | 10974232 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 2222953 funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i178t-67128bbd03bf55a5eb9531cc8d1dc5e0d9132cdcf84e91aa5072f750d939f47d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492540600055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu May 29 05:57:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-67128bbd03bf55a5eb9531cc8d1dc5e0d9132cdcf84e91aa5072f750d939f47d3 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10974232 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-March-4 |
| PublicationDateYYYYMMDD | 2025-03-04 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-March-4 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI) |
| PublicationTitleAbbrev | HRI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9010043 |
| Snippet | In this work, we combine the strengths of humans and robots by developing MARCER, a novel interactive and multimodal end-user robot programming system. MARCER... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 529 |
| SubjectTerms | Augmented reality End-user Robot Programming Human-Robot Collaboration Human-robot interaction Large language models Natural language processing Real-time systems Refining Robot programming Translation Usability Visualization |
| Title | MARCER: Multimodal Augmented Reality for Composing and Executing Robot Tasks |
| URI | https://ieeexplore.ieee.org/document/10974232 |
| WOSCitedRecordID | wos001492540600055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8eBJxYpvcvC6fWw2m8RbKS0VtJSlQm8lj1kp6q60u-LPN0lbxYMHbyEJBCZMZr7MfDMAt4JSw7V7_bSlcZRIlJFQNI2YMJIqoTRPTGg2wScTMZ_L6ZasHrgwiBiSz7DthyGWb0tT-6-yjo-W-sBiAxqcpxuy1pb165Y64-zelzfvOtQXs_Zu86-2KcFqjA7_ed4RtH74d2T6bVmOYQ-LE3h47GeDYXZHAmf2rbTqlfTr51BU05IMg0NNnA9KvI6X_g-AqMKS4Sea2ic3k6zUZUVmav2ybsHTaDgbjKNtL4Ro2eOiilLuDInWtkt1zphiqKXTHmOE7VnDsGulg5XGmlwkKHtKOTcvzp03YCWVecItPYVmURZ4BkQjszmmcUIdIk0l1w4iawdVkXPElNFzaHlRLN435S4WOylc_DF_CQde4CExK7mCZrWq8Rr2zUe1XK9uwiV9AX6Nk6w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl63j81mk3grpaXFtpSlQm8lj1kp1l1pd8WfbxK3igcP3kISCEyYzHyZ-WYQuueEaKbs66cMCYNIgAi4JHFAuRZEcqlYpH2zCTaZ8PlcTCuyuufCAIBPPoOGG_pYvsl16b7Kmi5a6gKLu2jPtc6q6FoV79cuNgfJ0BU4b1ncF9LGdvuvxinebvSP_nniMar_MPDw9Nu2nKAdyE7RaNxJur3kAXvW7Gtu5Ap3ymdfVtPgBLxLja0Xip2W5-4XAMvM4N4H6NKlN-MkV3mBZ3Lzsqmjp35v1h0EVTeEYNlmvAhiZk2JUqZFVEqppKCE1R-tuWkbTaFlhAWW2uiURyDaUlpHL0ytP2AEEWnEDDlDtSzP4BxhBdSkEIcRsZg0FkxZkKwsWAXGAGJKLlDdiWLx9lXwYrGVwuUf83foYDAbjxaj4eTxCh064fs0rega1Yp1CTdoX78Xy8361l_YJ2GplvU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+20th+ACM%2FIEEE+International+Conference+on+Human-Robot+Interaction+%28HRI%29&rft.atitle=MARCER%3A+Multimodal+Augmented+Reality+for+Composing+and+Executing+Robot+Tasks&rft.au=Ikeda%2C+Bryce&rft.au=Gramopadhye%2C+Maitrey&rft.au=Nekervis%2C+LillyAnn&rft.au=Szafir%2C+Daniel&rft.date=2025-03-04&rft.pub=IEEE&rft.spage=529&rft.epage=539&rft_id=info:doi/10.1109%2FHRI61500.2025.10974232&rft.externalDocID=10974232 |