Curriculum Learning with Sampling Scheduler for Imbalanced EEG-Based Seizure Detection

Epileptic seizures pose serious health risks and significantly affect the quality of life for individuals with epilepsy, emphasizing the importance of accurate and timely detection. Despite advancements in electroencephalography (EEG) based seizure detection, class imbalance between seizure and non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ... International Winter Conference on Brain-Computer Interface S. 1 - 5
Hauptverfasser: Choi, WooHyeok, Kim, Jun-Mo, Nam, Hyeonyeong, Kam, Tae-Eui
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 24.02.2025
Schlagworte:
ISSN:2572-7672
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Epileptic seizures pose serious health risks and significantly affect the quality of life for individuals with epilepsy, emphasizing the importance of accurate and timely detection. Despite advancements in electroencephalography (EEG) based seizure detection, class imbalance between seizure and non-seizure classes remains a major challenge, often leading to biased machine learning models and reduced generalizability. To address this, we propose a sampling scheduler approach inspired by dynamic curriculum learning. Unlike conventional resampling techniques, our method gradually adjusts the sampling ratio between seizure and non-seizure samples during training, enabling the model to effectively learn from imbalanced data. Experiments on the children's hospital boston and the massachusetts institute of technology scalp EEG (CHB-MIT) dataset demonstrate that our approach outperforms conventional methods, achieving superior results in balanced accuracy, specificity, area under th curve, and geometirc mean. These findings highlight the potential of the sampling scheduler to address the imbalance problem and enhance EEG-based seizure detection.
AbstractList Epileptic seizures pose serious health risks and significantly affect the quality of life for individuals with epilepsy, emphasizing the importance of accurate and timely detection. Despite advancements in electroencephalography (EEG) based seizure detection, class imbalance between seizure and non-seizure classes remains a major challenge, often leading to biased machine learning models and reduced generalizability. To address this, we propose a sampling scheduler approach inspired by dynamic curriculum learning. Unlike conventional resampling techniques, our method gradually adjusts the sampling ratio between seizure and non-seizure samples during training, enabling the model to effectively learn from imbalanced data. Experiments on the children's hospital boston and the massachusetts institute of technology scalp EEG (CHB-MIT) dataset demonstrate that our approach outperforms conventional methods, achieving superior results in balanced accuracy, specificity, area under th curve, and geometirc mean. These findings highlight the potential of the sampling scheduler to address the imbalance problem and enhance EEG-based seizure detection.
Author Nam, Hyeonyeong
Choi, WooHyeok
Kam, Tae-Eui
Kim, Jun-Mo
Author_xml – sequence: 1
  givenname: WooHyeok
  surname: Choi
  fullname: Choi, WooHyeok
  email: woohyeok_choi@korea.ac.kr
  organization: Korea University,Dept. Artificial Intelligence,Seoul,South Korea
– sequence: 2
  givenname: Jun-Mo
  surname: Kim
  fullname: Kim, Jun-Mo
  email: wnsah1008@korea.ac.kr
  organization: Korea University,Dept. Artificial Intelligence,Seoul,South Korea
– sequence: 3
  givenname: Hyeonyeong
  surname: Nam
  fullname: Nam, Hyeonyeong
  email: hy_nam@korea.ac.kr
  organization: Korea University,Dept. Artificial Intelligence,Seoul,South Korea
– sequence: 4
  givenname: Tae-Eui
  surname: Kam
  fullname: Kam, Tae-Eui
  email: kamte@korea.ac.kr
  organization: Korea University,Dept. Artificial Intelligence,Seoul,South Korea
BookMark eNo1UN1KwzAYjaLgnHsDkbxA55dkaZpLV-csFLyoejvS5IuLtN1IW0Sf3op6dX44HA7nkpx1hw4JuWGwZAz07TovUglZtuTA5XJyBFtJfUIWWulMCCY501yfkhmXiicqVfyCLPr-HQAEy7SG1Yy85mOMwY7N2NISTexC90Y_wrCnlWmPzY-q7B7d2GCk_hBp0damMZ1FRzebbbI2_cQqDF9jRHqPA9ohHLorcu5N0-PiD-fk5WHznD8m5dO2yO_KJDCVDUkKUvraTmOd8cLKVFuH4JzSFuva137iwoKuU-lTp2HKwMpow6W3iMqJObn-7Q2IuDvG0Jr4ufu_QnwDDklWjg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BCI65088.2025.10931459
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 9798331521929
EISSN 2572-7672
EndPage 5
ExternalDocumentID 10931459
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-6055fbc833daf3c569cde0dd79cebbfbf0dd3c09b65f6d90f3c04a9a25fcee7d3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471781800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Apr 02 05:44:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-6055fbc833daf3c569cde0dd79cebbfbf0dd3c09b65f6d90f3c04a9a25fcee7d3
PageCount 5
ParticipantIDs ieee_primary_10931459
PublicationCentury 2000
PublicationDate 2025-Feb.-24
PublicationDateYYYYMMDD 2025-02-24
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-24
  day: 24
PublicationDecade 2020
PublicationTitle The ... International Winter Conference on Brain-Computer Interface
PublicationTitleAbbrev BCI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189904
Score 1.907738
Snippet Epileptic seizures pose serious health risks and significantly affect the quality of life for individuals with epilepsy, emphasizing the importance of accurate...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Brain modeling
Class Imbalance
Curriculum Learning
Data models
Dynamic scheduling
Electroen-cephalogram
Electroencephalography
Epilepsy
Epileptic Seizure
Hospitals
Machine learning
Sampling Scheduler
Scalp
Seizure Detection
Training
Title Curriculum Learning with Sampling Scheduler for Imbalanced EEG-Based Seizure Detection
URI https://ieeexplore.ieee.org/document/10931459
WOSCitedRecordID wos001471781800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcDEo0W85QGxpc3Die2Rlha6VJUKqFvlJ6pEUxQSJPj1nN20iIEBZXEiR0nuopzvy_fdIXQdQ9SHGxSQprIsIJapQChiA0UTk0Wa6CTRvtkEHY_ZbMYntVjda2GMMZ58Zjpu6P_l65WqHFTWdaWPIpLyBmpQmq3FWltABV5O-LKSWgUMU7u9_sivPyALjNPO5uRfbVR8FBnu__P6B6j9o8fDk22kOUQ7Jj9CrdscEublJ77Bnsbp8fEWeu5vQT1cF099wQ5txVPh2OOwNwVH6erVFBhWrHi0lI7eqIzGg8F90IOwpvHULL6qwuA7U3quVt5GT8PBY_8hqJsnBIuIsjKANCW1UjGwtbCJSjOutAm1plwZKa20ME5UyGWW2kzzEOaERHARpxaehurkGDXzVW5OEFacUSWMJlILwhPJ01gq2HjMolBk7BS1na3mb-v6GPONmc7-OH6O9pxHvDCcXKBmWVTmEu2qj3LxXlx5r34DJg2lww
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4omujJBxjf7sF4K_SxfexREISIhAQ03Mg-DYkUU1sT_fXOLgXjwYPpZdtsk-1M09n5-n0zCF37EPVhgQzS1CRyiE6EwwTRjogDFXmSyCCQttlEPBgkkwkdlmJ1q4VRSlnymaqbof2XLxeiMFBZw5Q-8khIN9FWSIjvLuVaa0gFXk_4tpJSBwyTG81Wz-5AIA_0w_rq9l-NVGwc6ez9cwX7qPajyMPDdaw5QBsqPUTV2xRS5vknvsGWyGkR8ip6bq1hPVyWT33BBm_FI2b443A2AlfJ4lVlGPasuDfnhuAolMTt9r3ThMAm8UjNvopM4TuVW7ZWWkNPnfa41XXK9gnOzIuT3IFEJdRcJGBtpgMRRlRI5UoZU6E411zDOBAu5VGoI0ldmOMSRpkfaniaWAZHqJIuUnWMsKBJLJiShEtGaMBp6HMBB_UTz2VRcoJqxlbTt2WFjOnKTKd_XL9CO93xY3_a7w0eztCu8Y6ViZNzVMmzQl2gbfGRz96zS-vhb_GJqQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+International+Winter+Conference+on+Brain-Computer+Interface&rft.atitle=Curriculum+Learning+with+Sampling+Scheduler+for+Imbalanced+EEG-Based+Seizure+Detection&rft.au=Choi%2C+WooHyeok&rft.au=Kim%2C+Jun-Mo&rft.au=Nam%2C+Hyeonyeong&rft.au=Kam%2C+Tae-Eui&rft.date=2025-02-24&rft.pub=IEEE&rft.eissn=2572-7672&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBCI65088.2025.10931459&rft.externalDocID=10931459