A New Resource Allocation Technique in Vehicular Fog Computing Based Multi-Objective Optimization Algorithm with Latency Constraints and Energy Reduction

Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and allocating 1oV services among the various fog computing service resources. In order to manage the scheduling and activation of fog computing service...

Full description

Saved in:
Bibliographic Details
Published in:2025 International Conference on Machine Intelligence and Smart Innovation (ICMISI) pp. 169 - 176
Main Authors: Ashry, Moustafa Fathy, Ghoneim, Maha Mahmoud
Format: Conference Proceeding
Language:English
Published: IEEE 10.05.2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and allocating 1oV services among the various fog computing service resources. In order to manage the scheduling and activation of fog computing services more effectively, this research suggests a multi-objective grey wolf optimization (MOGWO) method. The Modified Grey Wolf Multi-Objective Optimization (GMOGWO) algorithm also combines the Gravity Reference Point approach with MOGWO. It determines the ideal download location by taking into account two factors: computation time and energy usage in a multi-user, multi-crawl, scalable, and diverse environment. The proposed algorithm is extended and improved to examine resource statuses and management tasks, and multi-objective functions are used in the resource allocation process. The GWO approach is utilized to tackle the scheduling issue first, and container migration is used to resolve the resource and task distribution issues. Shutting down unused physical servers reduces power consumption, improves imbalance, lowers latency, and boosts efficiency.
AbstractList Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and allocating 1oV services among the various fog computing service resources. In order to manage the scheduling and activation of fog computing services more effectively, this research suggests a multi-objective grey wolf optimization (MOGWO) method. The Modified Grey Wolf Multi-Objective Optimization (GMOGWO) algorithm also combines the Gravity Reference Point approach with MOGWO. It determines the ideal download location by taking into account two factors: computation time and energy usage in a multi-user, multi-crawl, scalable, and diverse environment. The proposed algorithm is extended and improved to examine resource statuses and management tasks, and multi-objective functions are used in the resource allocation process. The GWO approach is utilized to tackle the scheduling issue first, and container migration is used to resolve the resource and task distribution issues. Shutting down unused physical servers reduces power consumption, improves imbalance, lowers latency, and boosts efficiency.
Author Ghoneim, Maha Mahmoud
Ashry, Moustafa Fathy
Author_xml – sequence: 1
  givenname: Moustafa Fathy
  surname: Ashry
  fullname: Ashry, Moustafa Fathy
  email: mostafa.ashry@pua.edu.eg
  organization: Pharos University in Alexandria,Faculty of Computer Science and Artificial Intelligence,Alexandria,Egypt,21648
– sequence: 2
  givenname: Maha Mahmoud
  surname: Ghoneim
  fullname: Ghoneim, Maha Mahmoud
  email: maha.ghoneim@pua.edu.eg
  organization: Pharos University in Alexandria,Faculty of Computer Science and Artificial Intelligence,Alexandria,Egypt,21648
BookMark eNo1kEFOwzAURI0ECyi9AQtzgJTYbmp7GaIWIrVUgsK2sp3v1ChxSuJQlZtwW4IKmxlppHkazRU6940HhG5JPCEklnd5tspf8llCYjGhMU2GlJAkmU3P0FhyKRgjCWVTyS_Rd4qf4ICfoWv61gBOq6oxKrjG4w2YnXcfPWDn8RvsnOkr1eJFU-Ksqfd9cL7E96qDAq_6Krhord_BBPcJeL0PrnZfJ05alU3rwq7Gh0HxUgXw5jgwfBda5XzosPIFnntoy-OwpOjNb-8aXVhVdTD-8xF6Xcw32WO0XD_kWbqMHOEiRIm2XDCdMC2M5YzGIKxVyirKJFAupJaayEJZqhMurYEZcEULsFZzOhWcjdDNiesAYLtvXa3a4_b_MfYD6LZq5w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMISI65108.2025.11115564
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331523497
EndPage 176
ExternalDocumentID 11115564
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i178t-5bf783b53b8cf7320e8ffaafa239e2789b9b19daf2b579fce6e7a2deffb724873
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001583425500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 07:41:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-5bf783b53b8cf7320e8ffaafa239e2789b9b19daf2b579fce6e7a2deffb724873
PageCount 8
ParticipantIDs ieee_primary_11115564
PublicationCentury 2000
PublicationDate 2025-May-10
PublicationDateYYYYMMDD 2025-05-10
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-10
  day: 10
PublicationDecade 2020
PublicationTitle 2025 International Conference on Machine Intelligence and Smart Innovation (ICMISI)
PublicationTitleAbbrev ICMISI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9080794
Snippet Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and...
SourceID ieee
SourceType Publisher
StartPage 169
SubjectTerms Cloud computing
Delays
Edge computing
Fog Computing
Heuristic algorithms
Internet of Vehicles
IoV
Load Balancing Algorithm
MOGWO algorithm
Power demand
Processor scheduling
Resource Allocation
Resource management
SDN
Software
Technological innovation
Title A New Resource Allocation Technique in Vehicular Fog Computing Based Multi-Objective Optimization Algorithm with Latency Constraints and Energy Reduction
URI https://ieeexplore.ieee.org/document/11115564
WOSCitedRecordID wos001583425500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1uiPik4sRvruBrtjX9SPs4x4aDuQ2csreRNMlWca1sneBP8d-apK3igw--lVCScm97b3NzzzkI3bKYusa1WDnCxZ5oK8zbXox9T7p6NyCcUFp2_SEdjcLZLJqUYHWLhZFS2uYz2TSX9ixfZPHWlMpa5vP2_cCroRqlQQHW2kM3JW9ma9B9GDwOAv2WmZ4t4jer-38pp9jE0T_455KHqPEDwYPJd3I5QjsyPUafHdBBCaqSO3ReTSoypoVpxcUKSQrPcpnY_lLoZwsohBv0LHCnU5YAi7nFY_5SxDoY66ixKuGYespFtk7y5QpMhRaGzPxTf4DR9bRqEvkGWCqgZyGD-klEwT7bQE_93rR7j0ttBZw4NMyxzxUNXe67PIwVdUlbhkoxphhxI2nQsTziTiSYItynkYplICkjQirFKdGbHPcE1dMslacIBOckIIoJqpinhOQq4iE3B3RR4ClOzlDD2HX-VtBnzCuTnv8xfoH2jfewpUi9RPV8vZVXaDd-z5PN-to6_QslW7Qk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4UjfqkRox3j4mvRegu3R6RQCCOSyIa3ki7tjAjw8Aw8af4b207pvHBB9-WJmuX0_ac9fR834fQLYupY6YWq5pwsCuqCvOqG2PPlY4-DYhaIC27fkR7vWA0CgdrsLrFwkgpbfGZrJhHe5cv5vHKpMruzPb2PN_dRFue65JqDtfaQTdr5sy7TqPbeez4ep2Zqi3iVYo3fmmn2NDR2v_noAeo_APCg8F3eDlEGzI9Qp910G4JiqQ71F9NMDLGhWHBxgpJCs9ymtgKU2jNJ5BLN-he4F4HLQEWdYv7_CX3dtDXfmO2BmTqLifzRZJNZ2BytBAx81f9AUbZ0-pJZEtgqYCmBQ3qLxE5_2wZPbWaw0Ybr9UVcFKjQYY9rmjgcM_hQayoQ6oyUIoxxYgTSoOP5SGvhYIpwj0aqlj6kjIipFKcEn3McY5RKZ2n8gSB4Jz4RDFBFXOVkFyFPODmii70XcXJKSobu47fcgKNcWHSsz_ar9Fue9iNxlGn93CO9sxMYkuYeoFK2WIlL9F2_J4ly8WVXQBfp623aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Machine+Intelligence+and+Smart+Innovation+%28ICMISI%29&rft.atitle=A+New+Resource+Allocation+Technique+in+Vehicular+Fog+Computing+Based+Multi-Objective+Optimization+Algorithm+with+Latency+Constraints+and+Energy+Reduction&rft.au=Ashry%2C+Moustafa+Fathy&rft.au=Ghoneim%2C+Maha+Mahmoud&rft.date=2025-05-10&rft.pub=IEEE&rft.spage=169&rft.epage=176&rft_id=info:doi/10.1109%2FICMISI65108.2025.11115564&rft.externalDocID=11115564