A New Resource Allocation Technique in Vehicular Fog Computing Based Multi-Objective Optimization Algorithm with Latency Constraints and Energy Reduction
Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and allocating 1oV services among the various fog computing service resources. In order to manage the scheduling and activation of fog computing service...
Gespeichert in:
| Veröffentlicht in: | 2025 International Conference on Machine Intelligence and Smart Innovation (ICMISI) S. 169 - 176 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
10.05.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and allocating 1oV services among the various fog computing service resources. In order to manage the scheduling and activation of fog computing services more effectively, this research suggests a multi-objective grey wolf optimization (MOGWO) method. The Modified Grey Wolf Multi-Objective Optimization (GMOGWO) algorithm also combines the Gravity Reference Point approach with MOGWO. It determines the ideal download location by taking into account two factors: computation time and energy usage in a multi-user, multi-crawl, scalable, and diverse environment. The proposed algorithm is extended and improved to examine resource statuses and management tasks, and multi-objective functions are used in the resource allocation process. The GWO approach is utilized to tackle the scheduling issue first, and container migration is used to resolve the resource and task distribution issues. Shutting down unused physical servers reduces power consumption, improves imbalance, lowers latency, and boosts efficiency. |
|---|---|
| AbstractList | Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and allocating 1oV services among the various fog computing service resources. In order to manage the scheduling and activation of fog computing services more effectively, this research suggests a multi-objective grey wolf optimization (MOGWO) method. The Modified Grey Wolf Multi-Objective Optimization (GMOGWO) algorithm also combines the Gravity Reference Point approach with MOGWO. It determines the ideal download location by taking into account two factors: computation time and energy usage in a multi-user, multi-crawl, scalable, and diverse environment. The proposed algorithm is extended and improved to examine resource statuses and management tasks, and multi-objective functions are used in the resource allocation process. The GWO approach is utilized to tackle the scheduling issue first, and container migration is used to resolve the resource and task distribution issues. Shutting down unused physical servers reduces power consumption, improves imbalance, lowers latency, and boosts efficiency. |
| Author | Ghoneim, Maha Mahmoud Ashry, Moustafa Fathy |
| Author_xml | – sequence: 1 givenname: Moustafa Fathy surname: Ashry fullname: Ashry, Moustafa Fathy email: mostafa.ashry@pua.edu.eg organization: Pharos University in Alexandria,Faculty of Computer Science and Artificial Intelligence,Alexandria,Egypt,21648 – sequence: 2 givenname: Maha Mahmoud surname: Ghoneim fullname: Ghoneim, Maha Mahmoud email: maha.ghoneim@pua.edu.eg organization: Pharos University in Alexandria,Faculty of Computer Science and Artificial Intelligence,Alexandria,Egypt,21648 |
| BookMark | eNo1kEFOwzAURI0ECyi9AQtzgJTYbmp7GaIWIrVUgsK2sp3v1ChxSuJQlZtwW4IKmxlppHkazRU6940HhG5JPCEklnd5tspf8llCYjGhMU2GlJAkmU3P0FhyKRgjCWVTyS_Rd4qf4ICfoWv61gBOq6oxKrjG4w2YnXcfPWDn8RvsnOkr1eJFU-Ksqfd9cL7E96qDAq_6Krhord_BBPcJeL0PrnZfJ05alU3rwq7Gh0HxUgXw5jgwfBda5XzosPIFnntoy-OwpOjNb-8aXVhVdTD-8xF6Xcw32WO0XD_kWbqMHOEiRIm2XDCdMC2M5YzGIKxVyirKJFAupJaayEJZqhMurYEZcEULsFZzOhWcjdDNiesAYLtvXa3a4_b_MfYD6LZq5w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMISI65108.2025.11115564 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331523497 |
| EndPage | 176 |
| ExternalDocumentID | 11115564 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i178t-5bf783b53b8cf7320e8ffaafa239e2789b9b19daf2b579fce6e7a2deffb724873 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001583425500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 07:41:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-5bf783b53b8cf7320e8ffaafa239e2789b9b19daf2b579fce6e7a2deffb724873 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_11115564 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-10 |
| PublicationDateYYYYMMDD | 2025-05-10 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 International Conference on Machine Intelligence and Smart Innovation (ICMISI) |
| PublicationTitleAbbrev | ICMISI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9080794 |
| Snippet | Despite the fact that fog computing is a relatively young research area, there are effective and integrated methods for managing service activation and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 169 |
| SubjectTerms | Cloud computing Delays Edge computing Fog Computing Heuristic algorithms Internet of Vehicles IoV Load Balancing Algorithm MOGWO algorithm Power demand Processor scheduling Resource Allocation Resource management SDN Software Technological innovation |
| Title | A New Resource Allocation Technique in Vehicular Fog Computing Based Multi-Objective Optimization Algorithm with Latency Constraints and Energy Reduction |
| URI | https://ieeexplore.ieee.org/document/11115564 |
| WOSCitedRecordID | wos001583425500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46RDypOPE3T_DabW3WJjnOseFAt4FTdhtJk2wV18rWCf4p_rcmaat48OCtpCUpL-l76cv7vg-hG0ZDwhVhXhRI7LVDLe35rrREyGZ9CCpESzixCTIc0umUjUuwusPCKKVc8Zlq2Et3li-zeGNTZU37eYdh1N5G24REBVhrF12XvJnNQfdh8DiIzCqzNVtB2Kie_6Wc4gJHf_-fQx6g-g8ED8bfweUQban0CH12wDglqFLu0Hm1ociaFiYVFyskKTyrReLqS6GfzaEQbjC9wK0JWRIc5tYbiZfC18HIeI1lCcc0Xc6zVZIvlmAztHDP7Z76A6yup1OTyNfAUwk9Bxk0byIL9tk6eur3Jt07r9RW8BKf0NwLhSYUixALGmuCg5aiWnOueYCZsuhYwYTPJNeBCAnTsYoU4YFUWgsSmJ8cfIxqaZaqEwSY-IxpuxXh5k6bU98XWFluMSJEhNUpqlu7zt4K-oxZZdKzP9rP0Z6dPc9RpF6gWr7aqEu0E7_nyXp15Sb9CyN-skY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG0UjfqkRozfXhNfh2xd1_URCQQiX4loeCMtbWFGhoFh4k_x39p2oPHBB9-WLeuW27t7u9t7zkHolsWEckWZFwUSeyHR0u7vSkuEbPxDxEKUhROboJ1OPBiw3gqs7rAwSinXfKZK9tDt5cvZaGlLZXf28yYkCjfRFgnDoJzDtXbQzYo5865ZbTcfm5HxM9u1FZDS-o5f2ikuddT3__nQA1T8AeFB7zu9HKINlR6hzwqYsATrojtUXm0yssaF_pqNFZIUntUkcR2mUJ-NIZduMKPAvUlaEhzq1uuKlzzaQdfEjekKkGmGHM_mSTaZgq3RQovbVfUHWGVPpyeRLYCnEmoONGjeROb8s0X0VK_1qw1vpa7gJT6NM48ITWMsCBbxSFMclFWsNeeaB5gpi48VTPhMch0IQpkeqUhRHkiltaCB-c3Bx6iQzlJ1ggBTnzFtFyPcXAl57PsCK8suRoWIsDpFRWvX4VtOoDFcm_Tsj_PXaLfRb7eGrWbn4Rzt2Zn0HGHqBSpk86W6RNuj9yxZzK-cA3wBjzC1jQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Machine+Intelligence+and+Smart+Innovation+%28ICMISI%29&rft.atitle=A+New+Resource+Allocation+Technique+in+Vehicular+Fog+Computing+Based+Multi-Objective+Optimization+Algorithm+with+Latency+Constraints+and+Energy+Reduction&rft.au=Ashry%2C+Moustafa+Fathy&rft.au=Ghoneim%2C+Maha+Mahmoud&rft.date=2025-05-10&rft.pub=IEEE&rft.spage=169&rft.epage=176&rft_id=info:doi/10.1109%2FICMISI65108.2025.11115564&rft.externalDocID=11115564 |