Antenna Failure Resilience: Deep Learning-Enabled Robust DOA Estimation with Single Snapshot Sparse Arrays

Recent advancements in Deep Learning (DL) for Direction of Arrival (DOA) estimation have highlighted its superiority over traditional methods, offering faster inference, enhanced super-resolution, and robust performance in low Signal-to-Noise Ratio (SNR) environments. Despite these advancements, exi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference record - Asilomar Conference on Signals, Systems, & Computers s. 84 - 89
Hlavní autoři: Zheng, Ruxin, Sun, Shunqiao, Liu, Hongshan, Chen, Honglei, Soltanalian, Mojtaba, Li, Jian
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 27.10.2024
Témata:
ISSN:2576-2303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent advancements in Deep Learning (DL) for Direction of Arrival (DOA) estimation have highlighted its superiority over traditional methods, offering faster inference, enhanced super-resolution, and robust performance in low Signal-to-Noise Ratio (SNR) environments. Despite these advancements, existing research predominantly focuses on multi-snapshot scenarios, a limitation in the context of automotive radar systems which demand high angular resolution and often rely on limited snapshots, sometimes as scarce as a single snapshot. Furthermore, the increasing interest in sparse arrays for automotive radar, owing to their cost-effectiveness and reduced antenna element coupling, presents additional challenges including susceptibility to random sensor failures. This paper introduces a pioneering DL framework featuring a sparse signal augmentation layer, meticulously crafted to bolster single snapshot DOA estimation across diverse sparse array setups and amidst antenna failures. To our best knowledge, this is the first work to tackle this issue. Our approach improves the adaptability of deep learning techniques to overcome the unique difficulties posed by sparse arrays with single snapshot. We conduct thorough evaluations of our network's performance using simulated and real-world data, showcasing the efficacy and real-world viability of our proposed solution. The code and the real-world dataset are available at https://github.com/ruxinzh/Deep_RSA_DOA.
AbstractList Recent advancements in Deep Learning (DL) for Direction of Arrival (DOA) estimation have highlighted its superiority over traditional methods, offering faster inference, enhanced super-resolution, and robust performance in low Signal-to-Noise Ratio (SNR) environments. Despite these advancements, existing research predominantly focuses on multi-snapshot scenarios, a limitation in the context of automotive radar systems which demand high angular resolution and often rely on limited snapshots, sometimes as scarce as a single snapshot. Furthermore, the increasing interest in sparse arrays for automotive radar, owing to their cost-effectiveness and reduced antenna element coupling, presents additional challenges including susceptibility to random sensor failures. This paper introduces a pioneering DL framework featuring a sparse signal augmentation layer, meticulously crafted to bolster single snapshot DOA estimation across diverse sparse array setups and amidst antenna failures. To our best knowledge, this is the first work to tackle this issue. Our approach improves the adaptability of deep learning techniques to overcome the unique difficulties posed by sparse arrays with single snapshot. We conduct thorough evaluations of our network's performance using simulated and real-world data, showcasing the efficacy and real-world viability of our proposed solution. The code and the real-world dataset are available at https://github.com/ruxinzh/Deep_RSA_DOA.
Author Zheng, Ruxin
Liu, Hongshan
Sun, Shunqiao
Soltanalian, Mojtaba
Chen, Honglei
Li, Jian
Author_xml – sequence: 1
  givenname: Ruxin
  surname: Zheng
  fullname: Zheng, Ruxin
  organization: University of Illinois Chicago,Department of Electrical and Computer Engineering,Tuscaloosa,AL,35487
– sequence: 2
  givenname: Shunqiao
  surname: Sun
  fullname: Sun, Shunqiao
  organization: University of Illinois Chicago,Department of Electrical and Computer Engineering,Tuscaloosa,AL,35487
– sequence: 3
  givenname: Hongshan
  surname: Liu
  fullname: Liu, Hongshan
  organization: University of Illinois Chicago,Department of Electrical and Computer Engineering,Tuscaloosa,AL,35487
– sequence: 4
  givenname: Honglei
  surname: Chen
  fullname: Chen, Honglei
  organization: Mathworks,Natick,MA,01760
– sequence: 5
  givenname: Mojtaba
  surname: Soltanalian
  fullname: Soltanalian, Mojtaba
  organization: University of Illinois Chicago,Department of Electrical and Computer Engineering,Chicago,IL,60607
– sequence: 6
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  organization: University of Florida,Department of Electrical and Computer Engineering,Gainesville,FL,32611
BookMark eNo1kN9LwzAcxKMouM39Bz4EfO7Mj6ZJfCtbp4PhYNPnka7fuIyaliRD9t9bUJ8Ojvscx43Rje88IPRIyYxSop9WVVXNN2_LghCSzxhh-Wywc06YvkJTLbXignCRE6Gu0YgJWWSME36HxjGeCBkAxUboVPoE3hu8NK49B8BbiK514A_wjBcAPV6DCd75z6zypm6hwduuPseEF5sSVzG5L5Nc5_G3S0e8G3It4J03fTx2Ce96EyLgMgRziffo1po2wvRPJ-hjWb3PX7P15mU1L9eZo1KlTJjGWJ0L4BooZcQyCVpQK3gjjJb1gdsGqG2o4rkpbF3LwkrFLTB9IFwxPkEPv70OAPZ9GBaGy_7_G_4DMh5cyg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IEEECONF60004.2024.10943029
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350354058
EISSN 2576-2303
EndPage 89
ExternalDocumentID 10943029
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: CCF-2153386,ECCS-2340029
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i178t-5adaf945e39e1120f27e951f53d5a97bc3fde1fd1834a6fbb76f783fe29c03823
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479671800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:04:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-5adaf945e39e1120f27e951f53d5a97bc3fde1fd1834a6fbb76f783fe29c03823
PageCount 6
ParticipantIDs ieee_primary_10943029
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle Conference record - Asilomar Conference on Signals, Systems, & Computers
PublicationTitleAbbrev IEEECONF
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020282
Score 2.2722502
Snippet Recent advancements in Deep Learning (DL) for Direction of Arrival (DOA) estimation have highlighted its superiority over traditional methods, offering faster...
SourceID ieee
SourceType Publisher
StartPage 84
SubjectTerms Antenna arrays
antenna failure
Automotive radar
Deep learning
Direction-of-arrival estimation
DOA estimation
Estimation
Radar
Radar antennas
Signal resolution
Signal to noise ratio
single snapshot
sparse arrays
Superresolution
Vehicle dynamics
Title Antenna Failure Resilience: Deep Learning-Enabled Robust DOA Estimation with Single Snapshot Sparse Arrays
URI https://ieeexplore.ieee.org/document/10943029
WOSCitedRecordID wos001479671800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uiOjFXxN_E9Br5ta0TeJtzBVPc2wKu420edHJaEvbCf73Jlk39eDBWwgJhDwe733J-76H0C1XQlrVEuJJlRDfAAzCYw3ERENNY8pDqhLXbIINh3w6FaOarO64MADgis-gbYfuL19lydI-lRkPt2LhnmigBmPhiqy1QVcWPOygm1pE885ipf7TMApt1mJwoOe319t_NVJxcSTa_-cJDlDrm5GHR5tYc4i2ID1Cez_EBI_Re89Wo6cSR3Jua83xGMr5wnnuPX4AyHGtpfpKBo4wpfA4i5dlhQ0-xAPj6isWI7ZPs3hi1i0AT1KZl29ZhSe5QcCAe0UhP8sWeokGz_1HUndSIPMu4xUJpJJa-AFQASbB6miPgUmtdEBVIAWLE6oVdLUy_u3LUMcxCzXjVIMnko79KTxBzTRL4RRhqrvGukJCrLgvKZcJ7UgRgmdQOVe-f4Za9tpm-UosY7a-sfM_5i_QrjWODQceu0TNqljCFdpOPqp5WVw7E38B1pOoYw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5axcfFV8W3Ab2ubpPsbuKt1JaKtZa2Qm8lu5noStkt3a3gvzfZPtSDB28hhBAyDDNfMt83CF1zJaRVLXGIVJHDDMBweKjBMdFQ05Byn6qoaDYRtNt8MBCdOVm94MIAQFF8Bjd2WPzlqzSa2qcy4-FWLJyIVbTmMUbcGV1ria8sfNhAV3MZzVuLlmrP7YZv8xaDBAm7WWzwq5VKEUkaO_88wy4qf3PycGcZbfbQCiT7aPuHnOABeq_aevRE4oaMbbU57kIWjwrfvcP3AGM8V1N9deoFZUrhbhpOsxwbhIjrxtlnPEZsH2dxz6wbAe4lcpy9pTnujQ0GBlydTORnVkYvjXq_1nTmvRScuBLw3PGkklowD6gAk2K5mgRgkivtUeVJEYQR1QoqWhkPZ9LXYRj4OuBUAxGRa_8KD1EpSRM4QpjqirGvkBAqziTlMqKuFD4Qg8u5YuwYle21DcczuYzh4sZO_pi_RJvN_lNr2HpoP56iLWsoGxxIcIZK-WQK52g9-sjjbHJRmPsLxZerqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+-+Asilomar+Conference+on+Signals%2C+Systems%2C+%26+Computers&rft.atitle=Antenna+Failure+Resilience%3A+Deep+Learning-Enabled+Robust+DOA+Estimation+with+Single+Snapshot+Sparse+Arrays&rft.au=Zheng%2C+Ruxin&rft.au=Sun%2C+Shunqiao&rft.au=Liu%2C+Hongshan&rft.au=Chen%2C+Honglei&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2576-2303&rft.spage=84&rft.epage=89&rft_id=info:doi/10.1109%2FIEEECONF60004.2024.10943029&rft.externalDocID=10943029