Structure-Aware in-Air Handwritten Text Recognition with Graph-Guided Cross-Modality Translator
In-air handwriting as a new human-computer interaction way plays an important role in many virtual/mixed-reality applications. Existing methods for in-air handwritten text recognition (IAHTR) typically directly process handwriting trajectories with deep neural networks. However, those methods all si...
Saved in:
| Published in: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 5020 - 5024 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
14.04.2024
|
| Subjects: | |
| ISSN: | 2379-190X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In-air handwriting as a new human-computer interaction way plays an important role in many virtual/mixed-reality applications. Existing methods for in-air handwritten text recognition (IAHTR) typically directly process handwriting trajectories with deep neural networks. However, those methods all simply learn discriminative patterns by modelling low-level relationships between adjacent points of trajectories, while completely ignoring the inherent geometric structures of characters. Instead, we propose a novel Graph-guided Cross-modality Translator for IAHTR, which further explicitly exploits the geometric structures of characters for guiding the decoding of trajectories via graph-guided cross-modality attention mechanism without introducing extra annotation costs. Experiments on benchmarks IAHEW-UCAS2016 & IAM-OnDB show that our method has achieved state-of-the-art performance for handwritten text recognition. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP48485.2024.10447531 |