A Study on Distributed Learning for Attack Detection in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) have become a cornerstone in the implementation of Structural Health Monitoring (SHM) systems due to their versatility, energy efficiency, and adaptability. Their ability to facilitate low-powered communication makes them ideal for monitoring the structural integrity...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Prognostics and System Health Management Conference s. 1 - 8
Hlavní autori: Savage, Eric Noah, Popillo, Cameron, Zhou, Ruolin
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.06.2025
Predmet:
ISSN:2166-5656
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Wireless Sensor Networks (WSNs) have become a cornerstone in the implementation of Structural Health Monitoring (SHM) systems due to their versatility, energy efficiency, and adaptability. Their ability to facilitate low-powered communication makes them ideal for monitoring the structural integrity of environments where traditional wired connections are impractical. This paper explores the integration of a computer cluster with a WSN to enhance the functionality of an SHM system. Specifically, we investigate the feasibility of using a cluster of four Raspberry Pi computers to assess the feasibility of using distributed models in PyTorch and TensorFlow, assessing their applicability in heterogeneous network environments. Additionally, we examine the differences between machine learning-based and non-machine learning-based security approaches for WSNs. We analyze existing attack mitigation strategies, including traditional rule-based intrusion detection systems and cryptographic techniques, alongside ML-driven anomaly detection, classification, and threat prediction models. By evaluating how a computer cluster can enhance these security mechanisms, we aim to provide insights into the effectiveness of ML and non-ML-based techniques in improving attack detection, prevention, and overall system resilience in SHM deployments.
AbstractList Wireless Sensor Networks (WSNs) have become a cornerstone in the implementation of Structural Health Monitoring (SHM) systems due to their versatility, energy efficiency, and adaptability. Their ability to facilitate low-powered communication makes them ideal for monitoring the structural integrity of environments where traditional wired connections are impractical. This paper explores the integration of a computer cluster with a WSN to enhance the functionality of an SHM system. Specifically, we investigate the feasibility of using a cluster of four Raspberry Pi computers to assess the feasibility of using distributed models in PyTorch and TensorFlow, assessing their applicability in heterogeneous network environments. Additionally, we examine the differences between machine learning-based and non-machine learning-based security approaches for WSNs. We analyze existing attack mitigation strategies, including traditional rule-based intrusion detection systems and cryptographic techniques, alongside ML-driven anomaly detection, classification, and threat prediction models. By evaluating how a computer cluster can enhance these security mechanisms, we aim to provide insights into the effectiveness of ML and non-ML-based techniques in improving attack detection, prevention, and overall system resilience in SHM deployments.
Author Zhou, Ruolin
Popillo, Cameron
Savage, Eric Noah
Author_xml – sequence: 1
  givenname: Eric Noah
  surname: Savage
  fullname: Savage, Eric Noah
  email: esavage@umassd.edu
  organization: University of Massachusetts,Department of Electrical and Computer Engineering,Dartmouth,MA
– sequence: 2
  givenname: Cameron
  surname: Popillo
  fullname: Popillo, Cameron
  email: cpopillo@umassd.edu
  organization: University of Massachusetts,Department of Electrical and Computer Engineering,Dartmouth,MA
– sequence: 3
  givenname: Ruolin
  surname: Zhou
  fullname: Zhou, Ruolin
  email: rzhou@umassd.edu
  organization: University of Massachusetts,Department of Electrical and Computer Engineering,Dartmouth,MA
BookMark eNo1kMFKAzEURaMoWGv_wEV-YGryMkkmy9KqLVQtVHFZMpkXia0ZSVKkf29FvZsDl8Nd3EtyFvuIhFDOxpwzc7OYruYPSopGjoGB_CkVMFWfkJHRphGCSw6g4JQMgCtVSSXVBRnl_M6O0drUIAdkNaHrsu8OtI90FnJJod0X7OgSbYohvlHfJzopxbotnWFBV8LRDJG-hoQ7zJmuMeaj84jlq0_bfEXOvd1lHP1xSF7ubp-n82r5dL-YTpZV4Loplaw1s6KV1rhWiBqVAe46K61ouO2Y0-CA10aiZL5tdcN957xV0vkOPAcjhuT6dzcg4uYzhQ-bDpv_E8Q39vFTjA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPHM65385.2025.11062064
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331512262
EISSN 2166-5656
EndPage 8
ExternalDocumentID 11062064
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-5470a3b5a9cb334e6921cda5a381ad0c72c21495e50fbb781fdcfa65cfd2f1293
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001541522800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:11:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-5470a3b5a9cb334e6921cda5a381ad0c72c21495e50fbb781fdcfa65cfd2f1293
PageCount 8
ParticipantIDs ieee_primary_11062064
PublicationCentury 2000
PublicationDate 2025-June-9
PublicationDateYYYYMMDD 2025-06-09
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-9
  day: 09
PublicationDecade 2020
PublicationTitle Prognostics and System Health Management Conference
PublicationTitleAbbrev ICPHM
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000779425
Score 1.9113078
Snippet Wireless Sensor Networks (WSNs) have become a cornerstone in the implementation of Structural Health Monitoring (SHM) systems due to their versatility, energy...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Computer hacking
Fault tolerance
Heterogeneous networks
Intrusion detection
Monitoring
Predictive models
Prevention and mitigation
Prognostics and health management
Wireless sensor networks
Title A Study on Distributed Learning for Attack Detection in Wireless Sensor Networks
URI https://ieeexplore.ieee.org/document/11062064
WOSCitedRecordID wos001541522800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3RigNc2IrY5QNXt6kT28mxaqmKBFUkFvVWOV5QBUpRmyLx94zdBThw4BZFiWSNHb95zps3ANc6dmlScEW1YYJi_h9TzPI1xdzYqZQhLQrG8893cjhMR6MsXxWrh1oYa20Qn9mmvwz_8s1UL_xRWQuhSjDE0BrUpBTLYq3NgUokcWkxvlbrRFnrtpsP7gV-0Rx5IOPN9eu_GqkEHOnv_XME-9D4rsgj-QZrDmDLloew-8NM8AjyDvGiwE8yLUnP2-H6TlbWkJWD6gvB9JR0qkrpV9KzVZBglWRSEi-AfcMNjzwgpcVnhktl-LwBT_2bx-6Arvol0ElbphXliYxUjIHPdBHHiRUZa2ujuEJUVibSkmnmCZHlkSsKmbad0U4Jrp1hzuP-MdTLaWlPgAiWKmGSDNmcShLDVCElEieD-YguVGROoeGDM35fWmKM13E5--P-Oez4KQgaq-wC6tVsYS9hW39Uk_nsKkzkF66hne8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RNFEv_sL42x68Dka3rtuRgAQiLEtEw410bUeIZhgYJv73vpaBevDgbVmWpXnt-r2v-973AO6ll4V-yoQjFQ0czP89B7N86WBunImQIi2yxvMvfR7H4WgUJWWxuq2F0Vpb8ZmumUv7L1_N5NIcldURqgKKGLoNO6Z1VlmutTlScTkuLsrWeh03qvdaSXcQ4DfNkAlSVlu_4FcrFYskncN_juEIqt81eSTZoM0xbOn8BA5-2AmeQtIkRhb4SWY5aRtDXNPLSitSeqhOCCaopFkUQr6Sti6sCCsn05wYCewbbnnkCUktPhOvtOGLKjx3HoatrlN2THCmDR4WDvO5KzwMfSRTz_N1ENGGVIIJxGWhXMmppIYSaeZmacrDRqZkJgImM0Uzg_xnUMlnuT4HEtBQBMqPkM8J31dUpJwjdVKYkchUuOoCqiY44_eVKcZ4HZfLP-7fwV53OOiP-7348Qr2zXRYxVV0DZVivtQ3sCs_iulifmsn9QsZEqE4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Prognostics+and+System+Health+Management+Conference&rft.atitle=A+Study+on+Distributed+Learning+for+Attack+Detection+in+Wireless+Sensor+Networks&rft.au=Savage%2C+Eric+Noah&rft.au=Popillo%2C+Cameron&rft.au=Zhou%2C+Ruolin&rft.date=2025-06-09&rft.pub=IEEE&rft.eissn=2166-5656&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICPHM65385.2025.11062064&rft.externalDocID=11062064