Learning Input Driven Dynamic Bayesian Networks with Measurement Noise
Dynamic Bayesian Networks (DBNs) are useful tools for modelling complex systems whose network representations can be elicited a priori or learnt from data. In this paper, a maximum likelihood Doubly-Iterative Expectation Maximization (DI-EM) Algorithm is developed for the identification of grey-box...
Uloženo v:
| Vydáno v: | Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) s. 1214 - 1219 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
18.12.2024
|
| Témata: | |
| ISSN: | 1946-0759 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Dynamic Bayesian Networks (DBNs) are useful tools for modelling complex systems whose network representations can be elicited a priori or learnt from data. In this paper, a maximum likelihood Doubly-Iterative Expectation Maximization (DI-EM) Algorithm is developed for the identification of grey-box ARMAX state-space model representations of DBNs involving known, noisy measurement processes. The grey-box model incorporates network dependencies among time series variables and exploits time series data of low longitudinal and high cross-sectional dimensions. A network learning procedure is developed using a score-based structure-selection method to find the underlying network of an input-driven dynamical system. By computing a finite data version of the Bayesian Information Criterion (BIC) for small sample sizes, the proposed method's performance is investigated on simulated and real-world data. The algorithm recovers the underlying ground-truth networks of simulated systems under finite data criteria with Jaccard Coefficient values of up to 0.84, and selects structures with improved weighted mean-squared error loss over a baseline black-box model fit on real-world data. |
|---|---|
| ISSN: | 1946-0759 |
| DOI: | 10.1109/ICMLA61862.2024.00188 |