Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images

Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the interactions between specific immunophenotypes with the tumour microenvironment at the cellular level. Current state-of-the-art multiplexed...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (International Symposium on Biomedical Imaging) s. 1 - 5
Hlavní autori: Sandarenu, Piumi, Chen, Julia, Slapetova, Iveta, Browne, Lois, Graham, Peter H., Swarbrick, Alexander, Millar, Ewan K.A., Song, Yang, Meijering, Erik
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 27.05.2024
Predmet:
ISSN:1945-8452
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the interactions between specific immunophenotypes with the tumour microenvironment at the cellular level. Current state-of-the-art multiplexed immunofluorescence image analysis pipelines depend on cell feature representations characterised by morphological and stain intensity-based metrics generated using simple statistical and machine learning-based tools. However, these methods are not capable of generating complex representations of cells. We propose a deep learning-based cell feature extraction model using a variational autoencoder with supervision using a latent subspace to extract cell features in mIF images. We perform cell phenotype classification using a cohort of more than 44,000 multiplexed immunofluorescence cell image patches extracted across 1,093 tissue microarray cores of breast cancer patients, to demonstrate the success of our model against current and alternative methods.
AbstractList Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the interactions between specific immunophenotypes with the tumour microenvironment at the cellular level. Current state-of-the-art multiplexed immunofluorescence image analysis pipelines depend on cell feature representations characterised by morphological and stain intensity-based metrics generated using simple statistical and machine learning-based tools. However, these methods are not capable of generating complex representations of cells. We propose a deep learning-based cell feature extraction model using a variational autoencoder with supervision using a latent subspace to extract cell features in mIF images. We perform cell phenotype classification using a cohort of more than 44,000 multiplexed immunofluorescence cell image patches extracted across 1,093 tissue microarray cores of breast cancer patients, to demonstrate the success of our model against current and alternative methods.
Author Millar, Ewan K.A.
Slapetova, Iveta
Meijering, Erik
Graham, Peter H.
Song, Yang
Sandarenu, Piumi
Browne, Lois
Swarbrick, Alexander
Chen, Julia
Author_xml – sequence: 1
  givenname: Piumi
  surname: Sandarenu
  fullname: Sandarenu, Piumi
  organization: University of New South Wales,School of Computer Science and Engineering,Sydney,Australia
– sequence: 2
  givenname: Julia
  surname: Chen
  fullname: Chen, Julia
  organization: Garvan Institute of Medical Research,Cancer Ecosystems Program,Darlinghurst,Australia
– sequence: 3
  givenname: Iveta
  surname: Slapetova
  fullname: Slapetova, Iveta
  organization: St George Hospital,Cancer Care Centre,Kogarah,Australia
– sequence: 4
  givenname: Lois
  surname: Browne
  fullname: Browne, Lois
  organization: St George Hospital,Cancer Care Centre,Kogarah,Australia
– sequence: 5
  givenname: Peter H.
  surname: Graham
  fullname: Graham, Peter H.
  organization: St George Hospital,Cancer Care Centre,Kogarah,Australia
– sequence: 6
  givenname: Alexander
  surname: Swarbrick
  fullname: Swarbrick, Alexander
  organization: Garvan Institute of Medical Research,Cancer Ecosystems Program,Darlinghurst,Australia
– sequence: 7
  givenname: Ewan K.A.
  surname: Millar
  fullname: Millar, Ewan K.A.
  organization: UNSW Sydney,St. George & Sutherland Clinical School,Kensington,Australia
– sequence: 8
  givenname: Yang
  surname: Song
  fullname: Song, Yang
  organization: University of New South Wales,School of Computer Science and Engineering,Sydney,Australia
– sequence: 9
  givenname: Erik
  surname: Meijering
  fullname: Meijering, Erik
  organization: University of New South Wales,School of Computer Science and Engineering,Sydney,Australia
BookMark eNo1kN9KwzAYxaMoqHNvIJgX6EyaP00u59i0MPFi6u342n6RSNqMtJX59lbUc3PgcPjBOVfkrIsdEnLL2YJzZu_K3X2ptCrYIme5XHCmheKsOCFzW1gjFBNcCGFOySW3UmVGqvyCzPv-g00qpBRMXpKww9Znu_GA6dP32NA3SB4GHzsIdDkOEbs6Npioi4muMAS6QRjGhHR9HBLUP01advRpDIM_BDxOiLJtxy66MMaEfT0BcIrgHftrcu4g9Dj_8xl53axfVo_Z9vmhXC23meeFHjI37XGgNDC02mpWFbVpjHGsahS3PG-0kVBJraytK6VACCV4LYxrpuEASszIzS_XI-L-kHwL6Wv_f5D4Bm3WXd8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI56570.2024.10635107
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350313338
EISSN 1945-8452
EndPage 5
ExternalDocumentID 10635107
Genre orig-research
GrantInformation_xml – fundername: National Computational Infrastructure
  funderid: 10.13039/100010582
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-f202fa56a0e96960b7c8d88f0bd51912d684ab46599cb55a33531c38fd979aa53
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305705100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-f202fa56a0e96960b7c8d88f0bd51912d684ab46599cb55a33531c38fd979aa53
PageCount 5
ParticipantIDs ieee_primary_10635107
PublicationCentury 2000
PublicationDate 2024-May-27
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.2710357
Snippet Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms cell feature extraction
Feature extraction
Limiting
Measurement
Multiplexed immunofluorescence
Multiplexing
Phenotypes
Pipelines
semi-supervised variational autoencoder
tumour microenvironment
Visualization
Title Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images
URI https://ieeexplore.ieee.org/document/10635107
WOSCitedRecordID wos001305705100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjFr4nf5OC1s23aJjnqmFjQMZjKbiNtXmDQtaNrZX--L1039eDBWygkPF54fZ-_Xwi5MwxMwCLtCJ36mKCgzUkPAsdIL4SQhdLwBij8wodDMZnIUQtWb7AwANAMn0HPLptevi7S2pbK0MLRPXoWO77LOV-DtbYFFfSFAebm7QyX58r7ePwY266ei2mgH_Q2u3-9o9K4kafDfwpwRLrfgDw62rqaY7ID-Qk5-MEleEqyMcxnzrheWONfgqYfmAW3lT76UFeFZazUUFKMUmkfsoza6K8ugQ5WVbmGN9A4p6_thOEKj4gteKQwWY1yWtYnlCKe4w9o2SXvT4O3_rPTPqXgzDweVY5BDRgVRsoFS4fjJjwVWgjjJhpDOM_XkQhUEkShlGkShooxtM2UCaMll0qF7Ix08iKHc0KND4aJxAVQPACtEqbB0ngJMErjgRekaxU3XazZMqYbnV3-8f2K7NvrsR15n1-TTlXWcEP20s9qtixvmzv-AonRqjI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yBfXF28S7efC12jZJmzzq2FhxDmEqvo20OYHBbnSt7Od70nVeHnzwLRQSDiecnuv3hZAby8ByFhlPmizEBAVtTgXAPasCAYIJZeMKKNyL-335_q6ea7B6hYUBgGr4DG7dsurlm1lWulIZWji6x8BhxzcF52Gwgmt9lVTQG3LMzusprsBXd8ngIXF9PR8TwZDfrvf_ekmlciSdvX-KsE-a35A8-vzlbA7IBkwPye4PNsEjMh7AZOQNyrkz_wUY-oZ5cF3ro_dlMXOclQZyinEqbcF4TF38V-ZA28siXwEcaDKlT_WM4RKPSBx8ZGbHJcrpeJ9QimSCv6BFk7x22i-trlc_puCNgjgqPIsasFpE2gdHiOOncSaNlNZPDQZxQWgiyXXKI6FUlgqhGUPrzJi0RsVKa8GOSWM6m8IJoTYEy2TqA-iYg9EpM-CIvCRYbfDAU9J0ihvOV3wZw7XOzv74fk22uy9PvWEv6T-ekx13Va4_H8YXpFHkJVySreyjGC3yq-q-PwGOaK15
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Semi-Supervised+Variational+Autoencoder+for+Cell+Feature+Extraction+In+Multiplexed+Immunofluorescence+Images&rft.au=Sandarenu%2C+Piumi&rft.au=Chen%2C+Julia&rft.au=Slapetova%2C+Iveta&rft.au=Browne%2C+Lois&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI56570.2024.10635107&rft.externalDocID=10635107