Robust Categorical Data Clustering Guided by Multi-Granular Competitive Learning
Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of qualitative possible values, the nested granular cluster effect is prevalent in the implicit discrete distance space of categorical data. That is, data...
Uložené v:
| Vydané v: | Proceedings of the International Conference on Distributed Computing Systems s. 288 - 299 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
23.07.2024
|
| Predmet: | |
| ISSN: | 2575-8411 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of qualitative possible values, the nested granular cluster effect is prevalent in the implicit discrete distance space of categorical data. That is, data objects frequently overlap in space or subspace to form small compact clusters, and similar small clusters often form larger clusters. However, the distance space cannot be well-defined like the Euclidean distance due to the qualitative categorical data values, which brings great challenges to the cluster analysis of categorical data. In view of this, we design a Multi-Granular Competitive Penalization Learning (MGCPL) algorithm to allow potential clusters to interactively tune themselves and converge in stages with different numbers of naturally compact clusters. To leverage MGCPL, we also propose a Cluster Aggregation strategy based on MGCPL Encoding (CAME) to first encode the data objects according to the learned multi-granular distributions, and then perform final clustering on the embeddings. It turns out that the proposed MGCPL-guided Categorical Data Clustering (MCDC) approach is competent in automatically exploring the nested distribution of multi-granular clusters and highly robust to categorical data sets from various domains. Benefiting from its linear time complexity, MCDC is scalable to large-scale data sets and promising in pre-partitioning data sets or compute nodes for boosting distributed computing. Extensive experiments with statistical evidence demonstrate its superiority compared to state-of-the-art counterparts on various real public data sets. |
|---|---|
| AbstractList | Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of qualitative possible values, the nested granular cluster effect is prevalent in the implicit discrete distance space of categorical data. That is, data objects frequently overlap in space or subspace to form small compact clusters, and similar small clusters often form larger clusters. However, the distance space cannot be well-defined like the Euclidean distance due to the qualitative categorical data values, which brings great challenges to the cluster analysis of categorical data. In view of this, we design a Multi-Granular Competitive Penalization Learning (MGCPL) algorithm to allow potential clusters to interactively tune themselves and converge in stages with different numbers of naturally compact clusters. To leverage MGCPL, we also propose a Cluster Aggregation strategy based on MGCPL Encoding (CAME) to first encode the data objects according to the learned multi-granular distributions, and then perform final clustering on the embeddings. It turns out that the proposed MGCPL-guided Categorical Data Clustering (MCDC) approach is competent in automatically exploring the nested distribution of multi-granular clusters and highly robust to categorical data sets from various domains. Benefiting from its linear time complexity, MCDC is scalable to large-scale data sets and promising in pre-partitioning data sets or compute nodes for boosting distributed computing. Extensive experiments with statistical evidence demonstrate its superiority compared to state-of-the-art counterparts on various real public data sets. |
| Author | Liu, Peng Cheung, Yiu-Ming Zhang, Yiqun Jia, Hong Cai, Shenghong Luo, Xiaopeng |
| Author_xml | – sequence: 1 givenname: Shenghong surname: Cai fullname: Cai, Shenghong email: 3121005074@mail2.gdut.edu.cn organization: Guangdong University of Technology,Guangzhou,China – sequence: 2 givenname: Yiqun surname: Zhang fullname: Zhang, Yiqun email: yqzhang@gdut.edu.cn organization: Guangdong University of Technology,Guangzhou,China – sequence: 3 givenname: Xiaopeng surname: Luo fullname: Luo, Xiaopeng email: gordonlok@foxmail.com organization: Guangzhou Huali College,Guangzhou,China – sequence: 4 givenname: Yiu-Ming surname: Cheung fullname: Cheung, Yiu-Ming email: ymc@comp.hkbu.edu.hk organization: Hong Kong Baptist University,Hong Kong SAR,China – sequence: 5 givenname: Hong surname: Jia fullname: Jia, Hong email: hongjia1102@szu.edu.cn organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing,Shenzhen,China – sequence: 6 givenname: Peng surname: Liu fullname: Liu, Peng email: liupeng@gdut.edu.cn organization: Guangdong University of Technology,Guangzhou,China |
| BookMark | eNotjttKAzEYhKMoaGvfQCEvsPXPZnO6lFRroaJ4uC7Zzb8lst0t2azQtzegV8PMfAwzIxf90CMhdwyWjIG539iV_ZBgsi-hrJYAwMUZWRhlNBfAtQRhzsl1KZQodMXYFZmN43fGhJb8mry9D_U0Jmpdwv0QQ-M6unLJUdvlGGPo93Q9BY-e1if6MnUpFOvo-qlzkdrhcMQUUvhBukUX-0zfkMvWdSMu_nVOvp4eP-1zsX1db-zDtghMyVS0-a3gtfS8zNsCvKtaZZQrhdfKN66qWW7ryhguSsEaMDUaowTqRraMeT4nt3-7ARF3xxgOLp52DCRnoDn_BappUhc |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICDCS60910.2024.00035 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350386059 |
| EISSN | 2575-8411 |
| EndPage | 299 |
| ExternalDocumentID | 10631083 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 62102097,62374047,62174038 funderid: 10.13039/501100001809 |
| GroupedDBID | 29G 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i176t-f20253b6d32ded50da4f797a25d87dca4b13b6b49935251c09be9975e8c6f11d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304430200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:32:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-f20253b6d32ded50da4f797a25d87dca4b13b6b49935251c09be9975e8c6f11d3 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10631083 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-July-23 |
| PublicationDateYYYYMMDD | 2024-07-23 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the International Conference on Distributed Computing Systems |
| PublicationTitleAbbrev | ICDCS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0005863 |
| Score | 2.3263688 |
| Snippet | Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 288 |
| SubjectTerms | Big Data Boosting categorical feature Cluster analysis cluster granularity Clustering algorithms Competitive learning Distributed databases Encoding Euclidean distance number of clusters |
| Title | Robust Categorical Data Clustering Guided by Multi-Granular Competitive Learning |
| URI | https://ieeexplore.ieee.org/document/10631083 |
| WOSCitedRecordID | wos001304430200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBUHkW85YHVEMeJ7cwpFJaq4iF1qxw_UCXUojZB4t9z56aUhYEtSpRE8cn57uz7vo-Qawd_fesNZ9xAiZIZmTCdO8cyya3g0gFmu2g2oUYjPZkU45asHrkw3vvYfOZv8DDu5buFbXCpDGa4hGxEiw7pKKXWZK1tP4eWoqXo8KS4fSwH5bNENIQiMEWJ7AQt3X5ZqEQEue_98937pL_l4tHxD8ockB0_PyS9jRkDbefmERk_LapmVdMSpR_Wwh90YGpDy_cGxRDgZjpsZs47Wn3RyLtlQwAqbEOlZcyeYxsRbRVX3_rk9f7upXxgrV0Cm3ElaxbgO3NRSSdSeFaeOJMFVSiT5k4rZ01WcbhaQYmDEqjcJkXli0LlXlsZOHfimHTni7k_ITSYIFPUJpIQLe1TSMOwMjKJ1SFYI05JH0do-rFWxJhuBufsj_PnZA-DgGuiqbgg3XrZ-Euyaz_r2Wp5FeP4De8knqw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BQYJTWYrY8YGrIY4TxzmndBGlqqBIvVWOFxQJtahNkPh7bDelXDhwixIlUTxy3ow97z2AW2X_-lILgomwJUokWIB5rBSOGJGUMGUxW3mziWQ45JNJOqrJ6p4Lo7X2zWf6zh36vXw1l5VbKrMznNlshNNt2ImjKCQrutamo4MzWpN0SJDe97N29sIcHtoyMHQi2YEzdftlouIxpNP859sPoLVh46HRD84cwpaeHUFzbceA6tl5DKPneV4tS5Q58YeV9Adqi1Kg7L1ycgj2ZtStCqUVyr-QZ97iroUq14iKMp8_-0YiVGuuvrXgtfMwznq4NkzABUlYiY39zpjmTNHQPisOlIhMkiYijBVPlBRRTuzV3BY5TgSVyCDNdZomseaSGUIUPYHGbD7Tp4CMMCx06kTMxovr0CZirjYSgeTGSEHPoOVGaPqx0sSYrgfn_I_zN7DXGz8NpoP-8PEC9l1A3AppSC-hUS4qfQW78rMslotrH9NvXy-h8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+on+Distributed+Computing+Systems&rft.atitle=Robust+Categorical+Data+Clustering+Guided+by+Multi-Granular+Competitive+Learning&rft.au=Cai%2C+Shenghong&rft.au=Zhang%2C+Yiqun&rft.au=Luo%2C+Xiaopeng&rft.au=Cheung%2C+Yiu-Ming&rft.date=2024-07-23&rft.pub=IEEE&rft.eissn=2575-8411&rft.spage=288&rft.epage=299&rft_id=info:doi/10.1109%2FICDCS60910.2024.00035&rft.externalDocID=10631083 |