Quantum Patch-Based Autoencoder for Anomaly Segmentation

Quantum Machine Learning investigates the pos-sibility of quantum computers enhancing Machine Learning algorithms. Anomaly segmentation is a fundamental task in various domains to identify irregularities at sample level and can be addressed with both supervised and unsupervised methods. Autoencoders...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 IEEE International Conference on Quantum Computing and Engineering (QCE) Jg. 1; S. 259 - 267
Hauptverfasser: Madeira, Maria Francisca, Poggiali, Alessandro, Lorenz, Jeanette Miriam
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 15.09.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Quantum Machine Learning investigates the pos-sibility of quantum computers enhancing Machine Learning algorithms. Anomaly segmentation is a fundamental task in various domains to identify irregularities at sample level and can be addressed with both supervised and unsupervised methods. Autoencoders are commonly used in unsupervised tasks, where models are trained to reconstruct normal instances efficiently, al-lowing anomaly identification through high reconstruction errors. While quantum autoencoders have been proposed in the literature, their application to anomaly segmentation tasks remains unexplored. In this paper, we introduce a patch-based quantum autoencoder (QPB-AE) for image anomaly segmentation, with a number of parameters scaling logarithmically with patch size. QPB-AE reconstructs the quantum state of the embedded input patches, computing an anomaly map directly from measurement through a SWAP test without reconstructing the input image. We evaluate its performance across multiple datasets and parameter configurations and compare it against a classical counterpart.
AbstractList Quantum Machine Learning investigates the pos-sibility of quantum computers enhancing Machine Learning algorithms. Anomaly segmentation is a fundamental task in various domains to identify irregularities at sample level and can be addressed with both supervised and unsupervised methods. Autoencoders are commonly used in unsupervised tasks, where models are trained to reconstruct normal instances efficiently, al-lowing anomaly identification through high reconstruction errors. While quantum autoencoders have been proposed in the literature, their application to anomaly segmentation tasks remains unexplored. In this paper, we introduce a patch-based quantum autoencoder (QPB-AE) for image anomaly segmentation, with a number of parameters scaling logarithmically with patch size. QPB-AE reconstructs the quantum state of the embedded input patches, computing an anomaly map directly from measurement through a SWAP test without reconstructing the input image. We evaluate its performance across multiple datasets and parameter configurations and compare it against a classical counterpart.
Author Poggiali, Alessandro
Madeira, Maria Francisca
Lorenz, Jeanette Miriam
Author_xml – sequence: 1
  givenname: Maria Francisca
  surname: Madeira
  fullname: Madeira, Maria Francisca
  email: francisca.madeira@lmu.de
  organization: Ludwig-Maximilians-Universität München, Fraunhofer IKS,Munich,Germany
– sequence: 2
  givenname: Alessandro
  surname: Poggiali
  fullname: Poggiali, Alessandro
  email: alessandro.poggiali@phd.unipi.it
  organization: University of Pisa, Fraunhofer IKS,Munich,Germany
– sequence: 3
  givenname: Jeanette Miriam
  surname: Lorenz
  fullname: Lorenz, Jeanette Miriam
  email: jeanette.miriam.lorenz@iks.fraunhofer.de
  organization: Ludwig-Maximilians-Universität München, Fraunhofer IKS,Munich,Germany
BookMark eNotzE1OwzAQQGEjwQJKTwALXyBh7HETexmi8iNVggpYV1N7DJEaG6XOorcHCVZv8-ldifOUEwtxo6BWCtzdtl83oO2q1qBNDQDozsTStc4iqpVR2NpLYbczpTKP8pWK_6ru6chBdnPJnHwOPMmYJ9mlPNLhJN_4c-RUqAw5XYuLSIcjL_-7EB8P6_f-qdq8PD733aYaVNuUKiodIWhqMSprjW-9c8ZZUtojN0wO9po5RmsAf6EJATnsDZnYeAZNuBC3f9-BmXff0zDSdNopsFoZRPwB_m5E7g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QCE60285.2024.00039
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331541378
EndPage 267
ExternalDocumentID 10821433
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-f12f0d2a73f1884c7c99498a12c3e6ea90b2eeff8403f0d4dd3edb4a4f6ce02a3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001438831500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 15 06:21:19 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-f12f0d2a73f1884c7c99498a12c3e6ea90b2eeff8403f0d4dd3edb4a4f6ce02a3
PageCount 9
ParticipantIDs ieee_primary_10821433
PublicationCentury 2000
PublicationDate 2024-Sept.-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
PublicationTitleAbbrev QCE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8827859
Snippet Quantum Machine Learning investigates the pos-sibility of quantum computers enhancing Machine Learning algorithms. Anomaly segmentation is a fundamental task...
SourceID ieee
SourceType Publisher
StartPage 259
SubjectTerms Anomaly Segmen-tation
Autoencoders
Computational modeling
Data models
Image reconstruction
Image segmentation
Location awareness
Noise
Quantum Autoencoder
Quantum computing
Quantum Machine Learning
Scalability
Training
Title Quantum Patch-Based Autoencoder for Anomaly Segmentation
URI https://ieeexplore.ieee.org/document/10821433
Volume 1
WOSCitedRecordID wos001438831500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhdzWObbI5aWjyVFhV6K9lkogW7K3VX8N872V0fFw_eQgiETEi-b5L5Zgi5BO4t-JwlSF7jaxX6rDbGOwwj2VC5YsG0xSb0dJotFmbWidUbLQwANMFncBWbzV--L10dn8rwhGcC8V32SE9r3Yq1ukxCnJnr-WisEC6H6PWJmBObxQrgv2qmNJAx2f3nZHtk8CO-o7NvWNknW1AckGxeownqNZ3h1fmc3CL2eHpTV2XMQ-lhQ5F7UnTl1_blg97D07qTFBUD8jgZP4zukq7oQbLiWlVJ4CIwL6yWAa2XOu2MSU1muXASFFjDcgEQAjpmEgem3ku0dWrToBwwYeUh6RdlAUeEMiuMZcDBI-mxUuY4NuBOAHYqp_kxGcRlL1_bvBbLrxWf_NF_SnaQLqgmbkWckX61qeGcbLv3avW2uWh24xOU-404
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPHtHryu5rWPHLW0VKylxQq9lWwy0UK7lbor-O-dbNfHxYO3EAIhMyTfzGS-GUIugVkNNqMhGq8-WoU-q_b5DpE3NuIspk6tmk0k_X46HqtBTVavuDAAUCWfwZUfVn_5dmFKHyrDG55yxHexTjYiKTlb0bXqWkKMquthqx0jYEbo93FfFZv6HuC_uqZUoNHZ-ed2u6T5Q78LBt_AskfWIN8n6bBEIZTzYICP50t4i-hjg5uyWPhKlBaWAVqfATrzcz37CB7heV6TivImeeq0R61uWLc9CKcsiYvQMe6o5ToRDuUnTWKUkirVjBsBMWhFMw7gHLpmAhdKawVKW2rpYgOUa3FAGvkih0MSUM2VpsDAotmjhchwrUNdAE7GJmFHpOmPPXldVbaYfJ34-I_5C7LVHT30Jr27_v0J2fZS9rkTLDoljWJZwhnZNO_F9G15XmnmEx64kIc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Quantum+Computing+and+Engineering+%28QCE%29&rft.atitle=Quantum+Patch-Based+Autoencoder+for+Anomaly+Segmentation&rft.au=Madeira%2C+Maria+Francisca&rft.au=Poggiali%2C+Alessandro&rft.au=Lorenz%2C+Jeanette+Miriam&rft.date=2024-09-15&rft.pub=IEEE&rft.volume=1&rft.spage=259&rft.epage=267&rft_id=info:doi/10.1109%2FQCE60285.2024.00039&rft.externalDocID=10821433