Per-instance algorithm configuration for production planning in a reconfigurable assembly system
Reconfigurable assembly systems (RAS) are designed to operate in highly volatile market environments, which establishes the need for constant redefinitions of the production planning activities. These planning activities are usually modeled as complex mathematical optimization problems, and as such,...
Uloženo v:
| Vydáno v: | IEEE Mediterranean Electrotechnical Conference s. 62 - 67 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
25.06.2024
|
| Témata: | |
| ISSN: | 2158-8481 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Reconfigurable assembly systems (RAS) are designed to operate in highly volatile market environments, which establishes the need for constant redefinitions of the production planning activities. These planning activities are usually modeled as complex mathematical optimization problems, and as such, increased responsiveness of the system will be directly linked to the prompt and efficient solution of these problems. In this work, we investigate the use of Per-instance algorithm configuration (PIAC) methods to select, at runtime, the best configuration of an algorithm designed to solve these optimization problems. We compare and evaluate the performance of Hydra, a state-of-the-art PIAC method designed for heterogeneous instance spaces, and a simpler Case Base Reasoning (CBR) approach to PIAC. Our experiments suggest that CBR methods for PIAC could be more suitable to highly homogeneous instance spaces, such as those observed in a RAS context, with reductions of up to 17% over the default algorithm configuration settings. |
|---|---|
| AbstractList | Reconfigurable assembly systems (RAS) are designed to operate in highly volatile market environments, which establishes the need for constant redefinitions of the production planning activities. These planning activities are usually modeled as complex mathematical optimization problems, and as such, increased responsiveness of the system will be directly linked to the prompt and efficient solution of these problems. In this work, we investigate the use of Per-instance algorithm configuration (PIAC) methods to select, at runtime, the best configuration of an algorithm designed to solve these optimization problems. We compare and evaluate the performance of Hydra, a state-of-the-art PIAC method designed for heterogeneous instance spaces, and a simpler Case Base Reasoning (CBR) approach to PIAC. Our experiments suggest that CBR methods for PIAC could be more suitable to highly homogeneous instance spaces, such as those observed in a RAS context, with reductions of up to 17% over the default algorithm configuration settings. |
| Author | Limere, Veronique Vargas, Daniel Guzman Gautama, Sidharta Raa, Birger Uzunosmanoglu, Mehmet |
| Author_xml | – sequence: 1 givenname: Daniel Guzman surname: Vargas fullname: Vargas, Daniel Guzman email: daniel.guzmanvargas@ugent.be organization: Ghent University,Department of Industrial Systems Engineering and Product Design,Ghent,Belgium – sequence: 2 givenname: Sidharta surname: Gautama fullname: Gautama, Sidharta email: sidharta.gautama@ugent.be organization: Ghent University,Department of Industrial Systems Engineering and Product Design,Ghent,Belgium – sequence: 3 givenname: Mehmet surname: Uzunosmanoglu fullname: Uzunosmanoglu, Mehmet email: mehmet.uzunosmanoglu@ugent.be organization: Ghent University,Department of Industrial Systems Engineering and Product Design,Ghent,Belgium – sequence: 4 givenname: Birger surname: Raa fullname: Raa, Birger email: birger.raa@ugent.be organization: Ghent University,Department of Industrial Systems Engineering and Product Design,Ghent,Belgium – sequence: 5 givenname: Veronique surname: Limere fullname: Limere, Veronique email: veronique.limere@ugent.be organization: ISyE CoreLab, Flanders Make,Lommel,Belgium |
| BookMark | eNo9kMtOwzAURA0CiVL6Byws9il-5Dr2ElWlIBXKAtbFia-LUeJEdrro31PxWs2MdHQWc0nOYh-RkBvO5pwzc_u0XC8Xm2dQSpm5YKKcc6aYBi1PyMxURktgUldMwCmZCA660KXmF2SW8ydj7KhQRsKEvL9gKkLMo40NUtvu-hTGj442ffRht092DH2kvk90SL3bN99zaG2MIe5oiNTShP9w3R4dOWNXtweaD3nE7oqce9tmnP3mlLzdL18XD8V6s3pc3K2LwCs1FoiurHUtlGcoGw9obMM4P3YutCjRgTOurACYA-E8eI5KS-d1UyLUVsgpuf7xBkTcDil0Nh22f6fIL30mXFA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/MELECON56669.2024.10608583 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350387025 |
| EISSN | 2158-8481 |
| EndPage | 67 |
| ExternalDocumentID | 10608583 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i176t-eed4b8b26f0e3cf5e9ac011e3c12824ed5d9d47550d52df5f1e683df8c4e5ba23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001291230100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:35:49 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-eed4b8b26f0e3cf5e9ac011e3c12824ed5d9d47550d52df5f1e683df8c4e5ba23 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10608583 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-June-25 |
| PublicationDateYYYYMMDD | 2024-06-25 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Mediterranean Electrotechnical Conference |
| PublicationTitleAbbrev | MELECON |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001096935 |
| Score | 1.881915 |
| Snippet | Reconfigurable assembly systems (RAS) are designed to operate in highly volatile market environments, which establishes the need for constant redefinitions of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 62 |
| SubjectTerms | Assembly systems Cognition homogeneous instance spaces Mathematical models Optimization Per-instance algorithm configuration Planning Production planning reconfigurable assembly systems Runtime |
| Title | Per-instance algorithm configuration for production planning in a reconfigurable assembly system |
| URI | https://ieeexplore.ieee.org/document/10608583 |
| WOSCitedRecordID | wos001291230100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sCaksaP2DNqxQBVB5C6FTs-l0htWvWBxL_n7KRUDAxsdhydLJ_se9jffYTcG51yF_IaaDtkwp3yiZZaJYbnjgNzaGVMJJvIh0M1HutRA1aPWBgAiI_PoBua8S7fLYptSJXhDpfoISjWIq08lzVYa59QQWdcM9EUFsXew0v_ObABosMiAyQl492dgF9UKtGSDI7_OYcT0tlj8ujox9qckgOozsj7CFZJGT08HDaz6QJj_Y85xSDXl9NtrV2Kfild1pVdQ3fZ8BTRsqKGxoi4_tnOUMZ6DXM7-6J1iecOeRv0Xx-fkoYzISl7udwkOAlulc2kT4EVXoA2BW5hbKMhyjg44bTjOcYlTmTOC98DqZjzquAgrMnYOWlXiwouCFWAIkKFsBT1aVNrMfZjBs8Hm-Wp9O6SdMLyTJZ1WYzJbmWu_vh-TY6CEsI7q0zckPZmtYVbclh8bsr16i4q8xtE8aHQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMEEiCLeeGBNSRPbcWbUqoi26lCkbsWOzyVSm1Z9IPHvOTspFQMDmx1HJ8sn-7s7--4j5FGlITMuroHYIQJmpA1SkcpAscQwiA2ijPJkE0m_L0ejdFAlq_tcGADwj8-g4Zr-Lt_Ms40LleEOF2ghyHifHDjqLF6ma-1CKmiOpzGvSoti76nX6jo-QDRZhEtKiVhjK-IXmYrHkvbJP2dxSuq7rDw6-MGbM7IHxTl5H8AyyL2Nh8NqOpmjt_8xo-jm2nyyKfVL0TKli7K2q-suKqYimhdUUe8Tlz_rKcpYrWCmp1-0LPJcJ2_t1vC5E1SsCUHeTMQ6wEkwLXUkbAhxZjmkKsNNjG2EooiB4SY1LEHPxPDIWG6bIGRsrMwYcK2i-ILUinkBl4RKQBGuRliIGtWh1uj9xQpPCB0lobDmitTd8owXZWGM8XZlrv_4_kCOOsNed9x96b_ekGOnEPfqKuK3pLZebuCOHGaf63y1vPeK_QbjTaUb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Mediterranean+Electrotechnical+Conference&rft.atitle=Per-instance+algorithm+configuration+for+production+planning+in+a+reconfigurable+assembly+system&rft.au=Vargas%2C+Daniel+Guzman&rft.au=Gautama%2C+Sidharta&rft.au=Uzunosmanoglu%2C+Mehmet&rft.au=Raa%2C+Birger&rft.date=2024-06-25&rft.pub=IEEE&rft.eissn=2158-8481&rft.spage=62&rft.epage=67&rft_id=info:doi/10.1109%2FMELECON56669.2024.10608583&rft.externalDocID=10608583 |