New Structures and Algorithms for Length-Constrained Expander Decompositions

Expander decompositions form the basis of one of the most flexible paradigms for close-to-linear-time graph algorithms. Length-constrained expander de-compositions generalize this paradigm to better work for problems with lengths, distances and costs. Roughly, an (h,s) -length \phi -expander decompo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / annual Symposium on Foundations of Computer Science s. 1634 - 1645
Hlavní autoři: Haeupler, Bernhard, Hershkowitz, D Ellis, Tan, Zihan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 27.10.2024
Témata:
ISSN:2575-8454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Expander decompositions form the basis of one of the most flexible paradigms for close-to-linear-time graph algorithms. Length-constrained expander de-compositions generalize this paradigm to better work for problems with lengths, distances and costs. Roughly, an (h,s) -length \phi -expander decomposition is a small collection of length increases to a graph so that nodes within distance h can route flow over paths of length hs with congestion at most 1/\phi . In this work, we give a close-to-linear time algorithm for computing length-constrained expander decompositions in graphs with general lengths and capacities. Notably, and unlike previous works, our algorithm allows for one to trade off off between the size of the decomposition and the length of routing paths: for any \epsilon > 0 not too small, our algorithm computes in close-to-linear time an (h, s) -length \phi -expander decomposition of size m\cdot\phi\cdot n^{\epsilon} where s = exp(poly (1/\epsilon) ). The key foundations of our algorithm are: (1) a simple yet powerful structural theorem which states that the union of a sequence of sparse length-constrained cuts is itself sparse and (2) new algorithms for efficiently computing sparse length-constrained flows.
ISSN:2575-8454
DOI:10.1109/FOCS61266.2024.00102