QML-IDS: Quantum Machine Learning Intrusion Detection System

The emergence of quantum computing and related technologies presents opportunities for enhancing network security. The transition towards quantum computational power paves the way for creating strategies to mitigate the constantly advancing threats to network integrity. In response to this technolog...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings - IEEE Symposium on Computers and Communications pp. 1 - 6
Main Authors: Abreu, Diego, Rothenberg, Christian Esteve, Abelem, Antonio
Format: Conference Proceeding
Language:English
Published: IEEE 26.06.2024
Subjects:
ISSN:2642-7389
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The emergence of quantum computing and related technologies presents opportunities for enhancing network security. The transition towards quantum computational power paves the way for creating strategies to mitigate the constantly advancing threats to network integrity. In response to this technological advancement, our research presents QML-IDS, a novel Intrusion Detection System (IDS) that combines quantum and classical computing techniques. QML-IDS employs Quantum Machine Learning (QML) methodologies to analyze network patterns and detect attack activities. Through extensive experimental tests on publicly available datasets, we show that QML-IDS is effective at attack detection and performs well in binary and multiclass classification tasks. Our findings reveal that QML-IDS outperforms classical Machine Learning methods, demonstrating the promise of quantum-enhanced cybersecurity solutions for the age of quantum utility.
AbstractList The emergence of quantum computing and related technologies presents opportunities for enhancing network security. The transition towards quantum computational power paves the way for creating strategies to mitigate the constantly advancing threats to network integrity. In response to this technological advancement, our research presents QML-IDS, a novel Intrusion Detection System (IDS) that combines quantum and classical computing techniques. QML-IDS employs Quantum Machine Learning (QML) methodologies to analyze network patterns and detect attack activities. Through extensive experimental tests on publicly available datasets, we show that QML-IDS is effective at attack detection and performs well in binary and multiclass classification tasks. Our findings reveal that QML-IDS outperforms classical Machine Learning methods, demonstrating the promise of quantum-enhanced cybersecurity solutions for the age of quantum utility.
Author Rothenberg, Christian Esteve
Abelem, Antonio
Abreu, Diego
Author_xml – sequence: 1
  givenname: Diego
  surname: Abreu
  fullname: Abreu, Diego
  organization: Federal University of Pará (UFPA)
– sequence: 2
  givenname: Christian Esteve
  surname: Rothenberg
  fullname: Rothenberg, Christian Esteve
  organization: University of Campinas (UNICAMP)
– sequence: 3
  givenname: Antonio
  surname: Abelem
  fullname: Abelem, Antonio
  organization: Federal University of Pará (UFPA)
BookMark eNo1j8tKw0AUQEdRsK39A8H8QOI8cuchbiT1EUiREl2XyfSOjpipJJNF_16KujpndeDMyVncRyTkmtGCMWpu6raqJJNKFJzysmBUCSEBTsjSKKMFUAElF_yUzLgsea6ENhdkPo6flFINXM3I3Wbd5PWqvc02k41p6rO1dR8hYtagHWKI71kd0zCNYR-zFSZ06WjtYUzYX5Jzb79GXP5xQd4eH16r57x5eaqr-yYPTMmUYwmdN04rryjslEIPWlHdWQ_Gcs-E8zunJRplLQNgRnZogYKXDjw1VizI1W83IOL2ewi9HQ7b_1vxA3oQSvw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCC61673.2024.10733655
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9798350354232
EISSN 2642-7389
EndPage 6
ExternalDocumentID 10733655
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-e45bf9c87f705d77ef58708baf59a2f13cfdc86e97aa155196bea505f6c5f09a3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363176200092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:00:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-e45bf9c87f705d77ef58708baf59a2f13cfdc86e97aa155196bea505f6c5f09a3
PageCount 6
ParticipantIDs ieee_primary_10733655
PublicationCentury 2000
PublicationDate 2024-June-26
PublicationDateYYYYMMDD 2024-06-26
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-26
  day: 26
PublicationDecade 2020
PublicationTitle Proceedings - IEEE Symposium on Computers and Communications
PublicationTitleAbbrev ISCC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008527
Score 2.329404
Snippet The emergence of quantum computing and related technologies presents opportunities for enhancing network security. The transition towards quantum computational...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer security
Computers
Intrusion detection
Machine learning
Network security
Quantum computing
Quantum Machine Learning
Quantum Network
Title QML-IDS: Quantum Machine Learning Intrusion Detection System
URI https://ieeexplore.ieee.org/document/10733655
WOSCitedRecordID wos001363176200092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECW28aCXaq3xOxy8UvcDGDDeWo1N2qZNNemtARZMD26Ntv5-gW6rHjx4IySEMJOBAd57g9C1zTKfBOeGgEmAUEFlAAEwUlBqXdC_YywShfswHIrpVI4qsnrkwlhrI_jMtkMz_uUXC7MKT2U-woN4H2M1VAPga7LWdtsVLIMKwJUm8qY36XR4yiH3d8CMtjdDfxVRiWfIQ-Ofsx-g1jcbD4-258wh2rFlEzU25RhwFZ1NtP9DW_AI3Y0HfdLrTm7xeOWtt3rFg4ibtLiSVH3BvTIwLrxjcNcuIySrxGsF8xZ6frh_6jySqlQCmafAl8RSpp00AhwkrACwjvlAFFo5JlXm0ty4wghuJSgVkiTJtVU--XHcMJdIlR-jerko7QnCBqBQIAqhioRSo7VP0TTXmga8vkz4KWoF28ze1moYs41Zzv7oP0d7wQMBXpXxC1T3K7OXaNd8Lucf71fRh1-LtZxf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0omqgXFDF-24PXxWW3n8YbSNi4EAiYcCPbbms4uBgFf79tWVAPHrw1TZqmM5l22r73BuBWR5FNgmMVMBWyAHMsHAiABDnG2jj9O0I8UThl_T6fTMSgJKt7LozW2oPPdMM1_V9-PldL91RmI9yJ9xGyDTuudFZJ19psvJxErIRwNUNxl4xaLdqkLLa3wAg31oN_lVHxp0in-s_5D6H-zcdDg81JcwRbuqhBdV2QAZXxWYODH-qCx_Aw7KVB0h7do-HS2m_5inoeOalRKar6gpLCcS6sa1BbLzwoq0ArDfM6PHcex61uUBZLCGZNRheBxkQaoTgzLCQ5Y9oQG4pcZoaILDLNWJlccaoFyzKXJgkqdWbTH0MVMaHI4hOoFPNCnwJSjOUZ4znP8hBjJaVN0iSVEjvEvgjpGdSdbaZvKz2M6dos53_038Bed9xLp2nSf7qAfecNB7aK6CVU7Cr1Feyqz8Xs4_3a-_ML4PqfqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+Symposium+on+Computers+and+Communications&rft.atitle=QML-IDS%3A+Quantum+Machine+Learning+Intrusion+Detection+System&rft.au=Abreu%2C+Diego&rft.au=Rothenberg%2C+Christian+Esteve&rft.au=Abelem%2C+Antonio&rft.date=2024-06-26&rft.pub=IEEE&rft.eissn=2642-7389&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISCC61673.2024.10733655&rft.externalDocID=10733655