Realization of Low-Code Algorithm for Steel Energy Consumption Prediction

The steel industry is one of the world's highest energy consumption. It is important to improve its energy efficiency. Energy consumption prediction can help steel industry better plan and manage energy use. Based on a low-code development platform, multiple prediction algorithm models are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE International Conference on Computer Communication and the Internet (Online) S. 206 - 210
Hauptverfasser: Ji, Wanzhou, Bian, Yunqi, Cai, Hongxia
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 14.06.2024
Schlagworte:
ISSN:2833-2350
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The steel industry is one of the world's highest energy consumption. It is important to improve its energy efficiency. Energy consumption prediction can help steel industry better plan and manage energy use. Based on a low-code development platform, multiple prediction algorithm models are used to predict the energy consumption. A low-code algorithmic platform support is provided for the steel industry to achieve energy saving and efficiency improvement.
AbstractList The steel industry is one of the world's highest energy consumption. It is important to improve its energy efficiency. Energy consumption prediction can help steel industry better plan and manage energy use. Based on a low-code development platform, multiple prediction algorithm models are used to predict the energy consumption. A low-code algorithmic platform support is provided for the steel industry to achieve energy saving and efficiency improvement.
Author Bian, Yunqi
Cai, Hongxia
Ji, Wanzhou
Author_xml – sequence: 1
  givenname: Wanzhou
  surname: Ji
  fullname: Ji, Wanzhou
  email: 15161971811@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation Shanghai University,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,Shanghai,China
– sequence: 2
  givenname: Yunqi
  surname: Bian
  fullname: Bian, Yunqi
  email: bianyunqi@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation Shanghai University,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,Shanghai,China
– sequence: 3
  givenname: Hongxia
  surname: Cai
  fullname: Cai, Hongxia
  email: hxcai@staff.shu.edu.cn
  organization: School of Mechatronic Engineering and Automation Shanghai University,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,Shanghai,China
BookMark eNo1j9tKxDAYhKMouK59Ay_yAq1_kiZNLpewuoWC4uF6Sbd_10jbLGlF1qe3nq5mGJjhm0tyNoQBCaEMMsbA3JTW2lJxJk3GgecZA1XkiusTkpjCaCFBSFao4pQsuBYi5XNyQZJxfAMAwRkrhFqQ8hFd5z_d5MNAQ0ur8JHa0CBddfsQ_fTa0zZE-jQhdnQ9YNwfqQ3D-N4ffioPERu_-7ZX5Lx13YjJny7Jy-362W7S6v6utKsq9TPNlDayybWEVvO6ljpXzqBwgMBrgbtGGQG1NjMgcqeN0XPmmG7rFkHqQqpGLMn1765HxO0h-t7F4_b_vfgCcWNQ7A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCCI62159.2024.10674628
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350351767
EISSN 2833-2350
EndPage 210
ExternalDocumentID 10674628
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-d5d4850f82bb5846a9e3a0e02b3ecd6930b89003e2a8998ecda18fbfe058756d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001332839400035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:59:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-d5d4850f82bb5846a9e3a0e02b3ecd6930b89003e2a8998ecda18fbfe058756d3
PageCount 5
ParticipantIDs ieee_primary_10674628
PublicationCentury 2000
PublicationDate 2024-June-14
PublicationDateYYYYMMDD 2024-06-14
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-14
  day: 14
PublicationDecade 2020
PublicationTitle IEEE International Conference on Computer Communication and the Internet (Online)
PublicationTitleAbbrev ICCCI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211736
Score 1.8732334
Snippet The steel industry is one of the world's highest energy consumption. It is important to improve its energy efficiency. Energy consumption prediction can help...
SourceID ieee
SourceType Publisher
StartPage 206
SubjectTerms Computational modeling
Deep Learning
Energy conservation
Energy consumption
Energy Consumption Prediction
Energy efficiency
Low-Code Development Platform
Prediction algorithms
Predictive models
Steel industry
Title Realization of Low-Code Algorithm for Steel Energy Consumption Prediction
URI https://ieeexplore.ieee.org/document/10674628
WOSCitedRecordID wos001332839400035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEICDFg-eVKz4JgevaXeT7CZ7lKXFQinFF72VZDOrhdqVutW_bybdVjx48BYCCWECmVe-GUJulIOMJ2XCtOEpk1kkmIkdMGESWxaZtmkoX_w8VKORnkyycQOrBxYGAMLnM-jgMOTyXVWsMFTWxXJnyFLukl2l1BrW2gZUhHdlFKYiaVNHszvI83yQep2GQAqXnc3yX41Ugh7pH_zzBIek_UPk0fFW1xyRHVgck8G9t_IajpJWJR1WXyyvHNDb-Uvlnf7XN-pNUvpQA8xpL0B-NA_IZXgn_IaYpcFhmzz1e4_5HWtaI7BZrNKaucRJnUSl5taiCWEyECaCiFsBhcP2hlZjjBK4QYfKz5lYl7aEKPEOSurECWktqgWcEiqVjlJdCp7YTIKQJnWlwjAHL6zLZHFG2iiH6fu6-sV0I4LzP-YvyD5KG79TxfKStOrlCq7IXvFZzz6W1-HOvgEgyZdf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDTkFPKk78Ngev2dp8tOlRyobDOoZO2W0kzasO5iqz03_fJOsmHjx4C-8QwgvkfeX3HkLXsYGEikIQqWhEeBIwokIDhCmhizyROvLti5-zuN-Xo1EyqGF1z8IAgP98Bi239LV8U-YLlypru3ZnjqXcRFuCcxouca11SoXZYCZ2xUhcd9Js99I07UXWqjkkhfLWaoNfo1S8Jenu_fMM-6j5w-ThwdraHKANmB2i3oP182qSEpcFzsovkpYG8M30pbRh_-sbtk4pfqwAprjjMT-ceujSvxR2Q1enccsmeup2huktqYcjkEkYRxUxwnApgkJSrZ0ToRJgKoCAaga5cQMOtXRZSqDKhVRWpkJZ6AICYUOUyLAj1JiVMzhGmMcyiGTBqNAJB8ZVZIrYJTpork3C8xPUdHoYvy_7X4xXKjj9Q36Fdm6H99k46_XvztCu07z7XBXyc9So5gu4QNv5ZzX5mF_6-_sGMoOapg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computer+Communication+and+the+Internet+%28Online%29&rft.atitle=Realization+of+Low-Code+Algorithm+for+Steel+Energy+Consumption+Prediction&rft.au=Ji%2C+Wanzhou&rft.au=Bian%2C+Yunqi&rft.au=Cai%2C+Hongxia&rft.date=2024-06-14&rft.pub=IEEE&rft.eissn=2833-2350&rft.spage=206&rft.epage=210&rft_id=info:doi/10.1109%2FICCCI62159.2024.10674628&rft.externalDocID=10674628