Accelerating Unbalanced Optimal Transport Problem Using Dynamic Penalty Updating
With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the OT problem, has gained attention for its improved generality. There is an urgent need for fast algorithms that can efficiently handle large pe...
Gespeichert in:
| Veröffentlicht in: | Proceedings of ... International Joint Conference on Neural Networks S. 1 - 6 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
30.06.2024
|
| Schlagworte: | |
| ISSN: | 2161-4407 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the OT problem, has gained attention for its improved generality. There is an urgent need for fast algorithms that can efficiently handle large penalty parameters. In this paper, we prove that the recently proposed Majorize-Minimization algorithm for the UOT problem can be viewed as a form of the Bregman Proximal Descent (BPD), and we propose to use the dynamic penalty updating to overcome the substantial degradation of its convergence rate in response to large penalties. Using the dynamic scheme and Nesterov acceleration of the BPD algorithm, we can successfully compute more accurate and sparser solutions for the large penalty parameter and approach the computational speed of the well-known Sinkhorn's algorithm, which sacrifices accuracy by adding an entropy item. |
|---|---|
| AbstractList | With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the OT problem, has gained attention for its improved generality. There is an urgent need for fast algorithms that can efficiently handle large penalty parameters. In this paper, we prove that the recently proposed Majorize-Minimization algorithm for the UOT problem can be viewed as a form of the Bregman Proximal Descent (BPD), and we propose to use the dynamic penalty updating to overcome the substantial degradation of its convergence rate in response to large penalties. Using the dynamic scheme and Nesterov acceleration of the BPD algorithm, we can successfully compute more accurate and sparser solutions for the large penalty parameter and approach the computational speed of the well-known Sinkhorn's algorithm, which sacrifices accuracy by adding an entropy item. |
| Author | Kasai, Hiroyuki Su, Xun |
| Author_xml | – sequence: 1 givenname: Xun surname: Su fullname: Su, Xun organization: Waseda University,Graduate School of Fundamental Science and Engineering,Department of Communication and Computer Engineering – sequence: 2 givenname: Hiroyuki surname: Kasai fullname: Kasai, Hiroyuki organization: Waseda University,Graduate School of Fundamental Science and Engineering,Department of Communication and Computer Engineering |
| BookMark | eNo1kLtug0AURDdRIsV2_Acp9gcgd7n7LC3n5ciyKUxtXZYlIsJrBDT8fZxXM6cZHY1mzm7iOQbGuIBUCHCPm_f1bqfBOpdmkMlUgFagEK7Y0hlnUQEqhyK7ZrNMaJFICeaOzYfhEyBD53DG8pX3oQ09jU384EUsqaXoQ8X33dicqOWHnuLQnfuR5_25bMOJF8N39WmKdGo8z0Okdpx40VU_jnt2W1M7hOUfF6x4eT6s35Lt_nWzXm2TRhg9JhWKgJcgXXtjSKKHmoL0zpIWwgMZS5XSTkrjJQChrm1VOqjBglIWccEefr1NCOHY9Zex_XT8fwC_AKb4Urk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IJCNN60899.2024.10650530 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350359312 |
| EISSN | 2161-4407 |
| EndPage | 6 |
| ExternalDocumentID | 10650530 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i176t-d31e3d31a6fc77a43c0fae4c98a611c0a78ad569447c400a36f8db90f08055833 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315691505031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue May 06 03:31:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-d31e3d31a6fc77a43c0fae4c98a611c0a78ad569447c400a36f8db90f08055833 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10650530 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-June-30 |
| PublicationDateYYYYMMDD | 2024-06-30 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of ... International Joint Conference on Neural Networks |
| PublicationTitleAbbrev | IJCNN |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023993 |
| Score | 1.8823752 |
| Snippet | With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Bregman Proximal Descent Brightness Degradation Heuristic algorithms Machine learning algorithms Majorization-Maximization Algorithm Mirror Descent Navigation Neural networks Optimal Transport Optimization Unbalanced Optimal Transport |
| Title | Accelerating Unbalanced Optimal Transport Problem Using Dynamic Penalty Updating |
| URI | https://ieeexplore.ieee.org/document/10650530 |
| WOSCitedRecordID | wos001315691505031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmAqjyLe8sCaEsdOnIyoUAFCIQOVulV-nFElSKuSIvHvOTttEQMDS5REiiP5fLm7-PvuI-RK28QVTvEIs18XCYeuqBVe4lJgiZaA-Vzorv8kyzIfj4tqRVYPXBgACOAz6PvTsJdvZ2bpf5Whh2M-kXKs0LelzFqy1qa68pF2DdWJi-uHx0FZZn5TC4vARPTXz_5SUQlBZNj95-v3SO-HjkerTaDZJ1tQH5DuWo-BrtzzkFQ3xmAU8TatX-mo1h62aMDSZ_wuvKs3uulk7ofzOjI0IAbobStLTyvAZdV80dHchjF6ZDS8exncRyvFhGjKZNZEljPgeFCewSOV4CZ2CoQpcpUxZmIlc2XTrBBCGnRexTOXW13EDvPG1POvjkinntVwTKjQwLRWlgkHIoekgCxNubEsVirmUp-Qnp-hybxtijFZT87pH_fPyK63Qwu1OyedZrGEC7JjPpvpx-IymPIbkiSgKg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYKpPIp444E1JY6d14gKVQslZGilbpUfZ1QJ0qqkSPx7bCcpYmBgiZJIsSKfL3cXf999CN0IFehUc-qZ7Fd7TBtXFNxcmqVAAhGDyedcd_1RnGXJdJrmNVndcWEAwIHPoGtP3V6-Wsi1_VVmPNzkEyE1Ffp2yFjgV3StTX1lY20D1vHT2-FjL8siu61lysCAdZunf-mouDDSb__zBfZR54eQh_NNqDlAW1AconajyIBrBz1C-Z2UJo5YqxaveFIIC1yUoPCL-TK88ze86WVuh7NKMthhBvB9JUyPczALq_zCk6VyY3TQpP8w7g28WjPBm5M4Kj1FCVBz4JbDE3NGpa85MJkmPCJE-jxOuAqjlLFYGvflNNKJEqmvTeYYWgbWMWoViwJOEGYCiBBcEaaBJRCkEIUhlYr4nPs0FqeoY2dotqzaYsyayTn74_412h2Mn0ez0TB7Okd71iYV8O4CtcrVGi7Rjvws5x-rK2fWbxXWo3E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Accelerating+Unbalanced+Optimal+Transport+Problem+Using+Dynamic+Penalty+Updating&rft.au=Su%2C+Xun&rft.au=Kasai%2C+Hiroyuki&rft.date=2024-06-30&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIJCNN60899.2024.10650530&rft.externalDocID=10650530 |