Accelerating Unbalanced Optimal Transport Problem Using Dynamic Penalty Updating

With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the OT problem, has gained attention for its improved generality. There is an urgent need for fast algorithms that can efficiently handle large pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ... International Joint Conference on Neural Networks S. 1 - 6
Hauptverfasser: Su, Xun, Kasai, Hiroyuki
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 30.06.2024
Schlagworte:
ISSN:2161-4407
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the OT problem, has gained attention for its improved generality. There is an urgent need for fast algorithms that can efficiently handle large penalty parameters. In this paper, we prove that the recently proposed Majorize-Minimization algorithm for the UOT problem can be viewed as a form of the Bregman Proximal Descent (BPD), and we propose to use the dynamic penalty updating to overcome the substantial degradation of its convergence rate in response to large penalties. Using the dynamic scheme and Nesterov acceleration of the BPD algorithm, we can successfully compute more accurate and sparser solutions for the large penalty parameter and approach the computational speed of the well-known Sinkhorn's algorithm, which sacrifices accuracy by adding an entropy item.
AbstractList With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the OT problem, has gained attention for its improved generality. There is an urgent need for fast algorithms that can efficiently handle large penalty parameters. In this paper, we prove that the recently proposed Majorize-Minimization algorithm for the UOT problem can be viewed as a form of the Bregman Proximal Descent (BPD), and we propose to use the dynamic penalty updating to overcome the substantial degradation of its convergence rate in response to large penalties. Using the dynamic scheme and Nesterov acceleration of the BPD algorithm, we can successfully compute more accurate and sparser solutions for the large penalty parameter and approach the computational speed of the well-known Sinkhorn's algorithm, which sacrifices accuracy by adding an entropy item.
Author Kasai, Hiroyuki
Su, Xun
Author_xml – sequence: 1
  givenname: Xun
  surname: Su
  fullname: Su, Xun
  organization: Waseda University,Graduate School of Fundamental Science and Engineering,Department of Communication and Computer Engineering
– sequence: 2
  givenname: Hiroyuki
  surname: Kasai
  fullname: Kasai, Hiroyuki
  organization: Waseda University,Graduate School of Fundamental Science and Engineering,Department of Communication and Computer Engineering
BookMark eNo1kLtug0AURDdRIsV2_Acp9gcgd7n7LC3n5ciyKUxtXZYlIsJrBDT8fZxXM6cZHY1mzm7iOQbGuIBUCHCPm_f1bqfBOpdmkMlUgFagEK7Y0hlnUQEqhyK7ZrNMaJFICeaOzYfhEyBD53DG8pX3oQ09jU384EUsqaXoQ8X33dicqOWHnuLQnfuR5_25bMOJF8N39WmKdGo8z0Okdpx40VU_jnt2W1M7hOUfF6x4eT6s35Lt_nWzXm2TRhg9JhWKgJcgXXtjSKKHmoL0zpIWwgMZS5XSTkrjJQChrm1VOqjBglIWccEefr1NCOHY9Zex_XT8fwC_AKb4Urk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN60899.2024.10650530
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350359312
EISSN 2161-4407
EndPage 6
ExternalDocumentID 10650530
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-d31e3d31a6fc77a43c0fae4c98a611c0a78ad569447c400a36f8db90f08055833
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315691505031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue May 06 03:31:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-d31e3d31a6fc77a43c0fae4c98a611c0a78ad569447c400a36f8db90f08055833
PageCount 6
ParticipantIDs ieee_primary_10650530
PublicationCentury 2000
PublicationDate 2024-June-30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-30
  day: 30
PublicationDecade 2020
PublicationTitle Proceedings of ... International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
Score 1.8823752
Snippet With the increasing applications of Optimal Transport (OT) in the machine learning field, the Unbalanced Optimal Transport (UOT) problem, as a variant of the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Bregman Proximal Descent
Brightness
Degradation
Heuristic algorithms
Machine learning algorithms
Majorization-Maximization Algorithm
Mirror Descent
Navigation
Neural networks
Optimal Transport
Optimization
Unbalanced Optimal Transport
Title Accelerating Unbalanced Optimal Transport Problem Using Dynamic Penalty Updating
URI https://ieeexplore.ieee.org/document/10650530
WOSCitedRecordID wos001315691505031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmAqjyLe8sCaEsdOnIyoUAFCIQOVulV-nFElSKuSIvHvOTttEQMDS5REiiP5fLm7-PvuI-RK28QVTvEIs18XCYeuqBVe4lJgiZaA-Vzorv8kyzIfj4tqRVYPXBgACOAz6PvTsJdvZ2bpf5Whh2M-kXKs0LelzFqy1qa68pF2DdWJi-uHx0FZZn5TC4vARPTXz_5SUQlBZNj95-v3SO-HjkerTaDZJ1tQH5DuWo-BrtzzkFQ3xmAU8TatX-mo1h62aMDSZ_wuvKs3uulk7ofzOjI0IAbobStLTyvAZdV80dHchjF6ZDS8exncRyvFhGjKZNZEljPgeFCewSOV4CZ2CoQpcpUxZmIlc2XTrBBCGnRexTOXW13EDvPG1POvjkinntVwTKjQwLRWlgkHIoekgCxNubEsVirmUp-Qnp-hybxtijFZT87pH_fPyK63Qwu1OyedZrGEC7JjPpvpx-IymPIbkiSgKg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYKpPIp444E1JY6d14gKVQslZGilbpUfZ1QJ0qqkSPx7bCcpYmBgiZJIsSKfL3cXf999CN0IFehUc-qZ7Fd7TBtXFNxcmqVAAhGDyedcd_1RnGXJdJrmNVndcWEAwIHPoGtP3V6-Wsi1_VVmPNzkEyE1Ffp2yFjgV3StTX1lY20D1vHT2-FjL8siu61lysCAdZunf-mouDDSb__zBfZR54eQh_NNqDlAW1AconajyIBrBz1C-Z2UJo5YqxaveFIIC1yUoPCL-TK88ze86WVuh7NKMthhBvB9JUyPczALq_zCk6VyY3TQpP8w7g28WjPBm5M4Kj1FCVBz4JbDE3NGpa85MJkmPCJE-jxOuAqjlLFYGvflNNKJEqmvTeYYWgbWMWoViwJOEGYCiBBcEaaBJRCkEIUhlYr4nPs0FqeoY2dotqzaYsyayTn74_412h2Mn0ez0TB7Okd71iYV8O4CtcrVGi7Rjvws5x-rK2fWbxXWo3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Accelerating+Unbalanced+Optimal+Transport+Problem+Using+Dynamic+Penalty+Updating&rft.au=Su%2C+Xun&rft.au=Kasai%2C+Hiroyuki&rft.date=2024-06-30&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIJCNN60899.2024.10650530&rft.externalDocID=10650530