Exploring Long-term Memory in Evolutionary Multi-objective Algorithms: A Case Study with NSGA-III
In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front; which cannot be covered by commonly utilized population sizes. This is particularly vital in scenarios where innovization and informed decisio...
Uloženo v:
| Vydáno v: | Conference proceedings - Canadian Conference on Electrical and Computer Engineering s. 864 - 870 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
06.08.2024
|
| Témata: | |
| ISSN: | 2576-7046 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front; which cannot be covered by commonly utilized population sizes. This is particularly vital in scenarios where innovization and informed decision-making are crucial. The challenge stems from the constraints imposed by population size limitations in evolutionary algorithms, which impede the efficient exploration of multiple solutions. A contributing factor to this issue is the lack of long-term memory in the well-known evolutionary algorithms to retain these solutions. On the contrary, the effective training of machine learning-assisted optimization or innovization relies on a substantial amount of data, which can be provided by preserving these valuable solutions. Moreover, long-term memory can play a significant role in expensive many-objective optimization, where the repetition of the optimization process is both costly and time-consuming, similar to training deep neural networks. The study focuses on NSGA-III equipped with long-term memory and assessing its performance across 16 benchmark problems, encompassing DTLZ1 to DTLZ7 and WFG1 to WFG9, considering scenarios with 3, 5, and 10 objectives. This paper explores the benefits of incorporating long-term memory in terms of the ultimate optimization outcomes, including the number of non-dominated solutions, knee points, and Inverted Generational Distance (IGD). |
|---|---|
| AbstractList | In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front; which cannot be covered by commonly utilized population sizes. This is particularly vital in scenarios where innovization and informed decision-making are crucial. The challenge stems from the constraints imposed by population size limitations in evolutionary algorithms, which impede the efficient exploration of multiple solutions. A contributing factor to this issue is the lack of long-term memory in the well-known evolutionary algorithms to retain these solutions. On the contrary, the effective training of machine learning-assisted optimization or innovization relies on a substantial amount of data, which can be provided by preserving these valuable solutions. Moreover, long-term memory can play a significant role in expensive many-objective optimization, where the repetition of the optimization process is both costly and time-consuming, similar to training deep neural networks. The study focuses on NSGA-III equipped with long-term memory and assessing its performance across 16 benchmark problems, encompassing DTLZ1 to DTLZ7 and WFG1 to WFG9, considering scenarios with 3, 5, and 10 objectives. This paper explores the benefits of incorporating long-term memory in terms of the ultimate optimization outcomes, including the number of non-dominated solutions, knee points, and Inverted Generational Distance (IGD). |
| Author | Ebrahimi, Mehran Bidgoli, Azam Asilian Poor, Masoud Kermani Rahnamayan, Shahryar |
| Author_xml | – sequence: 1 givenname: Masoud Kermani surname: Poor fullname: Poor, Masoud Kermani email: masoud.kermanipoor@ontariotechu.net organization: University of Ontario Institute of Technology,Faculty of Science,Oshawa,Canada – sequence: 2 givenname: Shahryar surname: Rahnamayan fullname: Rahnamayan, Shahryar email: srahnamayan@brocku.ca organization: Brock University,Engineering Department,St. Catharines,Canada – sequence: 3 givenname: Azam Asilian surname: Bidgoli fullname: Bidgoli, Azam Asilian email: aasilianbidgoli@wlu.ca organization: Wilfrid Laurier University,Faculty of Science,Waterloo,Canada – sequence: 4 givenname: Mehran surname: Ebrahimi fullname: Ebrahimi, Mehran email: mehran.ebrahimi@ontariotechu.ca organization: University of Ontario Institute of Technology,Faculty of Science,Oshawa,Canada |
| BookMark | eNo1UM1OwzAYCwgktrE34JAX6Mh_Gm5VVUalDQ6D85QuX0emtpnabLC3pxJwsmzJlu0puulCBwhhShaUEvOY50VeSCOoXDDCxIISpTRn-grNjTYpl4Rrqlh6jSZMapVoItQdmg7DgRAiUiUmyBbfxyb0vtvjVej2SYS-xWtoQ3_BvsPFOTSn6ENnR74-NdEnoTrALvoz4KzZj8742Q5POMO5HQBv4sld8Nco4tfNMkvKsrxHt7VtBpj_4Qx9PBfv-UuyeluWebZKPNUqJo5ZJaS0wIS2VrvUWc44VEaIXS2crI1kThonrFOE1yRN64rYyppxo5IAfIYefnM9AGyPvW_Hztv_S_gPoQtYhA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CCECE59415.2024.10667327 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350371628 |
| EISSN | 2576-7046 |
| EndPage | 870 |
| ExternalDocumentID | 10667327 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i176t-d2a6455ae247aa7d8da323eb944cf4d5f952d59d4ad603f088fb0aba903765ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315610300187&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue May 06 03:31:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-d2a6455ae247aa7d8da323eb944cf4d5f952d59d4ad603f088fb0aba903765ee3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10667327 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Aug.-6 |
| PublicationDateYYYYMMDD | 2024-08-06 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug.-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | Conference proceedings - Canadian Conference on Electrical and Computer Engineering |
| PublicationTitleAbbrev | CCECE |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0004864 |
| Score | 1.8786168 |
| Snippet | In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front;... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 864 |
| SubjectTerms | Archive Artificial neural networks Benchmark testing Decision making Evolutionary computation IGD Knee points Long-term memory Many-objective optimization NSGA-III Optimization Pareto-front coverage Training |
| Title | Exploring Long-term Memory in Evolutionary Multi-objective Algorithms: A Case Study with NSGA-III |
| URI | https://ieeexplore.ieee.org/document/10667327 |
| WOSCitedRecordID | wos001315610300187&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjFV8U3OXhN3e7msfFWlq0WtBRU6K0km9la0V1pt4X-e5P0pQcP3pKQB0ySGSb5vhmEbrQGAZFgJMu0JlRRRXREAyJFoKyP24SmVj7ZhOh2435f9pZkdc-FAQAPPoOGK_q_fFNmU_dUZm-4S1IZim20LQRfkLU2JMiY0xVUJ5C3SZImKZPWPlknMKSN1dhfWVS8EWnv_3P5A1Tf0PFwb21oDtEWFEdo70ckwWOk1lg6_FgWQ-IULn5yKNo5HhU4nS1PmLJ1z7klpX5f6Drc-hjakdXb5-QOt3BizRp26MI5dm-0uPt83yKdTqeOXtvpS_JAltkTyKgpeEVMqDhlTEFIhVLCxEZFYQRaUprl1LBcstAwaagyPIhyq21yHSitZGB1DgOITlCtKAs4RTjStoMIaW64tA4Ot7OBcGF1NIuDXMszVHfSGnwtAmQMVoI6_6P9Au26PfE4On6JatV4CldoJ5tVo8n42m_rN0kio_8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6TdSLXzN-y8Ers2uhFG9L07nGrVniTHZboNA5o63ZuiX77wX2pQcP3oAAIQ94Lw9-v_cAuBdCUeVRgtJUCIQ55kh42EGMOlz7uHVVF9wmm6BJEvT7rLskq1sujFLKgs9UzRTtX74s0ql5KtM33CSpdOk22CEYu86CrrWhQQY-XoF1HPYQhlEYEaYtlHYDXVxbjf6VR8WakebhPxdwBKobQh7srk3NMdhS-Qk4-BFL8BTwNZoOtot8iIzKhR2Do53DUQ6j2fKMcV23rFtUiPeFtoONj6EeWb59Th5hA4basEGDL5xD80oLk5enBorjuApem1EvbKFl_gQ0qlO_RNLlPiaEKxdTzqkMJPdcTwmGcZphSTJGXEmYxFz6jpdpfZMJhwvOHK11iFLeGajkRa7OAfSE7kBdnEmfaRfH17MpagLrCBI4mWAXoGqkNfhahMgYrAR1-Uf7Hdhr9TrtQTtOnq_Avtkfi6rzr0GlHE_VDdhNZ-VoMr61W_wN_9mnRg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+Canadian+Conference+on+Electrical+and+Computer+Engineering&rft.atitle=Exploring+Long-term+Memory+in+Evolutionary+Multi-objective+Algorithms%3A+A+Case+Study+with+NSGA-III&rft.au=Poor%2C+Masoud+Kermani&rft.au=Rahnamayan%2C+Shahryar&rft.au=Bidgoli%2C+Azam+Asilian&rft.au=Ebrahimi%2C+Mehran&rft.date=2024-08-06&rft.pub=IEEE&rft.eissn=2576-7046&rft.spage=864&rft.epage=870&rft_id=info:doi/10.1109%2FCCECE59415.2024.10667327&rft.externalDocID=10667327 |