Exploring Long-term Memory in Evolutionary Multi-objective Algorithms: A Case Study with NSGA-III

In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front; which cannot be covered by commonly utilized population sizes. This is particularly vital in scenarios where innovization and informed decisio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference proceedings - Canadian Conference on Electrical and Computer Engineering s. 864 - 870
Hlavní autoři: Poor, Masoud Kermani, Rahnamayan, Shahryar, Bidgoli, Azam Asilian, Ebrahimi, Mehran
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 06.08.2024
Témata:
ISSN:2576-7046
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front; which cannot be covered by commonly utilized population sizes. This is particularly vital in scenarios where innovization and informed decision-making are crucial. The challenge stems from the constraints imposed by population size limitations in evolutionary algorithms, which impede the efficient exploration of multiple solutions. A contributing factor to this issue is the lack of long-term memory in the well-known evolutionary algorithms to retain these solutions. On the contrary, the effective training of machine learning-assisted optimization or innovization relies on a substantial amount of data, which can be provided by preserving these valuable solutions. Moreover, long-term memory can play a significant role in expensive many-objective optimization, where the repetition of the optimization process is both costly and time-consuming, similar to training deep neural networks. The study focuses on NSGA-III equipped with long-term memory and assessing its performance across 16 benchmark problems, encompassing DTLZ1 to DTLZ7 and WFG1 to WFG9, considering scenarios with 3, 5, and 10 objectives. This paper explores the benefits of incorporating long-term memory in terms of the ultimate optimization outcomes, including the number of non-dominated solutions, knee points, and Inverted Generational Distance (IGD).
AbstractList In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front; which cannot be covered by commonly utilized population sizes. This is particularly vital in scenarios where innovization and informed decision-making are crucial. The challenge stems from the constraints imposed by population size limitations in evolutionary algorithms, which impede the efficient exploration of multiple solutions. A contributing factor to this issue is the lack of long-term memory in the well-known evolutionary algorithms to retain these solutions. On the contrary, the effective training of machine learning-assisted optimization or innovization relies on a substantial amount of data, which can be provided by preserving these valuable solutions. Moreover, long-term memory can play a significant role in expensive many-objective optimization, where the repetition of the optimization process is both costly and time-consuming, similar to training deep neural networks. The study focuses on NSGA-III equipped with long-term memory and assessing its performance across 16 benchmark problems, encompassing DTLZ1 to DTLZ7 and WFG1 to WFG9, considering scenarios with 3, 5, and 10 objectives. This paper explores the benefits of incorporating long-term memory in terms of the ultimate optimization outcomes, including the number of non-dominated solutions, knee points, and Inverted Generational Distance (IGD).
Author Ebrahimi, Mehran
Bidgoli, Azam Asilian
Poor, Masoud Kermani
Rahnamayan, Shahryar
Author_xml – sequence: 1
  givenname: Masoud Kermani
  surname: Poor
  fullname: Poor, Masoud Kermani
  email: masoud.kermanipoor@ontariotechu.net
  organization: University of Ontario Institute of Technology,Faculty of Science,Oshawa,Canada
– sequence: 2
  givenname: Shahryar
  surname: Rahnamayan
  fullname: Rahnamayan, Shahryar
  email: srahnamayan@brocku.ca
  organization: Brock University,Engineering Department,St. Catharines,Canada
– sequence: 3
  givenname: Azam Asilian
  surname: Bidgoli
  fullname: Bidgoli, Azam Asilian
  email: aasilianbidgoli@wlu.ca
  organization: Wilfrid Laurier University,Faculty of Science,Waterloo,Canada
– sequence: 4
  givenname: Mehran
  surname: Ebrahimi
  fullname: Ebrahimi, Mehran
  email: mehran.ebrahimi@ontariotechu.ca
  organization: University of Ontario Institute of Technology,Faculty of Science,Oshawa,Canada
BookMark eNo1UM1OwzAYCwgktrE34JAX6Mh_Gm5VVUalDQ6D85QuX0emtpnabLC3pxJwsmzJlu0puulCBwhhShaUEvOY50VeSCOoXDDCxIISpTRn-grNjTYpl4Rrqlh6jSZMapVoItQdmg7DgRAiUiUmyBbfxyb0vtvjVej2SYS-xWtoQ3_BvsPFOTSn6ENnR74-NdEnoTrALvoz4KzZj8742Q5POMO5HQBv4sld8Nco4tfNMkvKsrxHt7VtBpj_4Qx9PBfv-UuyeluWebZKPNUqJo5ZJaS0wIS2VrvUWc44VEaIXS2crI1kThonrFOE1yRN64rYyppxo5IAfIYefnM9AGyPvW_Hztv_S_gPoQtYhA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CCECE59415.2024.10667327
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350371628
EISSN 2576-7046
EndPage 870
ExternalDocumentID 10667327
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i176t-d2a6455ae247aa7d8da323eb944cf4d5f952d59d4ad603f088fb0aba903765ee3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315610300187&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue May 06 03:31:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-d2a6455ae247aa7d8da323eb944cf4d5f952d59d4ad603f088fb0aba903765ee3
PageCount 7
ParticipantIDs ieee_primary_10667327
PublicationCentury 2000
PublicationDate 2024-Aug.-6
PublicationDateYYYYMMDD 2024-08-06
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-6
  day: 06
PublicationDecade 2020
PublicationTitle Conference proceedings - Canadian Conference on Electrical and Computer Engineering
PublicationTitleAbbrev CCECE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004864
Score 1.8786168
Snippet In the field of many-objective optimization, obtaining a dense solution set is a challenging task, mostly due to having hyper-surface nature of Pareto-front;...
SourceID ieee
SourceType Publisher
StartPage 864
SubjectTerms Archive
Artificial neural networks
Benchmark testing
Decision making
Evolutionary computation
IGD
Knee points
Long-term memory
Many-objective optimization
NSGA-III
Optimization
Pareto-front coverage
Training
Title Exploring Long-term Memory in Evolutionary Multi-objective Algorithms: A Case Study with NSGA-III
URI https://ieeexplore.ieee.org/document/10667327
WOSCitedRecordID wos001315610300187&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjFV8U3OXhN3e7msfFWlq0WtBRU6K0km9la0V1pt4X-e5P0pQcP3pKQB0ySGSb5vhmEbrQGAZFgJMu0JlRRRXREAyJFoKyP24SmVj7ZhOh2435f9pZkdc-FAQAPPoOGK_q_fFNmU_dUZm-4S1IZim20LQRfkLU2JMiY0xVUJ5C3SZImKZPWPlknMKSN1dhfWVS8EWnv_3P5A1Tf0PFwb21oDtEWFEdo70ckwWOk1lg6_FgWQ-IULn5yKNo5HhU4nS1PmLJ1z7klpX5f6Drc-hjakdXb5-QOt3BizRp26MI5dm-0uPt83yKdTqeOXtvpS_JAltkTyKgpeEVMqDhlTEFIhVLCxEZFYQRaUprl1LBcstAwaagyPIhyq21yHSitZGB1DgOITlCtKAs4RTjStoMIaW64tA4Ot7OBcGF1NIuDXMszVHfSGnwtAmQMVoI6_6P9Au26PfE4On6JatV4CldoJ5tVo8n42m_rN0kio_8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6TdSLXzN-y8Ers2uhFG9L07nGrVniTHZboNA5o63ZuiX77wX2pQcP3oAAIQ94Lw9-v_cAuBdCUeVRgtJUCIQ55kh42EGMOlz7uHVVF9wmm6BJEvT7rLskq1sujFLKgs9UzRTtX74s0ql5KtM33CSpdOk22CEYu86CrrWhQQY-XoF1HPYQhlEYEaYtlHYDXVxbjf6VR8WakebhPxdwBKobQh7srk3NMdhS-Qk4-BFL8BTwNZoOtot8iIzKhR2Do53DUQ6j2fKMcV23rFtUiPeFtoONj6EeWb59Th5hA4basEGDL5xD80oLk5enBorjuApem1EvbKFl_gQ0qlO_RNLlPiaEKxdTzqkMJPdcTwmGcZphSTJGXEmYxFz6jpdpfZMJhwvOHK11iFLeGajkRa7OAfSE7kBdnEmfaRfH17MpagLrCBI4mWAXoGqkNfhahMgYrAR1-Uf7Hdhr9TrtQTtOnq_Avtkfi6rzr0GlHE_VDdhNZ-VoMr61W_wN_9mnRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+Canadian+Conference+on+Electrical+and+Computer+Engineering&rft.atitle=Exploring+Long-term+Memory+in+Evolutionary+Multi-objective+Algorithms%3A+A+Case+Study+with+NSGA-III&rft.au=Poor%2C+Masoud+Kermani&rft.au=Rahnamayan%2C+Shahryar&rft.au=Bidgoli%2C+Azam+Asilian&rft.au=Ebrahimi%2C+Mehran&rft.date=2024-08-06&rft.pub=IEEE&rft.eissn=2576-7046&rft.spage=864&rft.epage=870&rft_id=info:doi/10.1109%2FCCECE59415.2024.10667327&rft.externalDocID=10667327