VRFfall: Cross Vision-RF Fall Detection with Camera and mmWave Radar

Accurate fall detection systems are vital to address the global health concern of elderly falls, which often lead to severe injuries, hospitalizations, and fatalities. Since falls can happen at any time in any location, it is imperative to have a comprehensive system that boasts high applicability a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference on Parallel and Distributed Systems s. 100 - 107
Hlavní autoři: Zhu, Yanying, Song, Haotian, Wu, Kaishun, Sun, Min, Zhou, Li
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 10.10.2024
Témata:
ISSN:2690-5965
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate fall detection systems are vital to address the global health concern of elderly falls, which often lead to severe injuries, hospitalizations, and fatalities. Since falls can happen at any time in any location, it is imperative to have a comprehensive system that boasts high applicability across a broad range of scenarios, operating seamlessly 24/7. However, within a range of fall detection systems, most of the existing work is built upon mono-modal sensors, which are inevitably inherited and constrained by mono-modal shortages. To overcome the constraints of mono-modal systems, we introduce VRFfall, a novel multi-modal fall detection system that seamlessly fuses mmWave radar and camera technologies. As a system with high generalization capabilities, VRFfall supports both multi-modal and mono-modal inputs with its independent feature extraction pipeline for each modality. Utilizing a cross-modal knowledge transfer design, VRFfall enhances performance with mono-modal input by leveraging fused knowledge from the other modality. Moreover, to ensure optimal fusion decisions under modal discrepancies, VRFfall incorporates an adaptive Modal Quality Assessment Module (MQAM) that dynamically evaluates and fuses features from both modalities. Extensive evaluations using a dataset collected from 20 volunteers across two environments and three conditions have been conducted on VRFfall. The results demonstrate its high performance and excellent generalization across diverse environments and conditions, promising a 24/7 continuous fall detection system.
AbstractList Accurate fall detection systems are vital to address the global health concern of elderly falls, which often lead to severe injuries, hospitalizations, and fatalities. Since falls can happen at any time in any location, it is imperative to have a comprehensive system that boasts high applicability across a broad range of scenarios, operating seamlessly 24/7. However, within a range of fall detection systems, most of the existing work is built upon mono-modal sensors, which are inevitably inherited and constrained by mono-modal shortages. To overcome the constraints of mono-modal systems, we introduce VRFfall, a novel multi-modal fall detection system that seamlessly fuses mmWave radar and camera technologies. As a system with high generalization capabilities, VRFfall supports both multi-modal and mono-modal inputs with its independent feature extraction pipeline for each modality. Utilizing a cross-modal knowledge transfer design, VRFfall enhances performance with mono-modal input by leveraging fused knowledge from the other modality. Moreover, to ensure optimal fusion decisions under modal discrepancies, VRFfall incorporates an adaptive Modal Quality Assessment Module (MQAM) that dynamically evaluates and fuses features from both modalities. Extensive evaluations using a dataset collected from 20 volunteers across two environments and three conditions have been conducted on VRFfall. The results demonstrate its high performance and excellent generalization across diverse environments and conditions, promising a 24/7 continuous fall detection system.
Author Zhu, Yanying
Sun, Min
Song, Haotian
Zhou, Li
Wu, Kaishun
Author_xml – sequence: 1
  givenname: Yanying
  surname: Zhu
  fullname: Zhu, Yanying
  email: yzhu367@connect.hkust-gz.edu.cn
  organization: The Hong Kong University of Science and Technology(Guangzhou) Guangzhou,Thrust of Data Science and Analytics,China
– sequence: 2
  givenname: Haotian
  surname: Song
  fullname: Song, Haotian
  email: haotiansong@hkust-gz.edu.cn
  organization: The Hong Kong University of Science and Technology(Guangzhou),Thrust of Internet of Things,Guangzhou,China
– sequence: 3
  givenname: Kaishun
  surname: Wu
  fullname: Wu, Kaishun
  email: wuks@hkust-gz.edu.cn
  organization: The Hong Kong University of Science and Technology(Guangzhou) Guangzhou,Thrust of Data Science and Analytics,China
– sequence: 4
  givenname: Min
  surname: Sun
  fullname: Sun, Min
  email: sunmin@chinamobile.com
  organization: China Mobile Information Technology,Shenzhen,China
– sequence: 5
  givenname: Li
  surname: Zhou
  fullname: Zhou, Li
  email: zhouli@chinamobile.com
  organization: China Mobile Information Technology,Shenzhen,China
BookMark eNotT1FLwzAYjKLgNvcPRPIHWr_ka5LGt9FZHQyUqvNxxPYrRtZWmqL4743o0x3H3XE3Zyf90BNjlwJSIcBebYqH1fpRIypIJcgsBQCJR2xpjc0RhRLKan3MZlJbSCJXZ2wewnt0QczM2HpXla07HK55MQ4h8J0PfuiTquRlVPmaJqqnqPAvP73xwnU0Ou76hnfdi_skXrnGjefsNHYEWv7jgj2XN0_FXbK9v90Uq23ihdFT0ohWYtxgG23UqxHkcpQI0mJNkjLQGRrSjpo8_7U5Z1EqEX_YzLRUW1ywi79eT0T7j9F3bvzeCzAac6PwB0y5S2w
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPADS63350.2024.00023
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331515966
EISSN 2690-5965
EndPage 107
ExternalDocumentID 10763875
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-d1f235969d675b71ea83230293ce2e406437e6aed883596aa93251983947fec93
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481011800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:59:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-d1f235969d675b71ea83230293ce2e406437e6aed883596aa93251983947fec93
PageCount 8
ParticipantIDs ieee_primary_10763875
PublicationCentury 2000
PublicationDate 2024-Oct.-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Parallel and Distributed Systems
PublicationTitleAbbrev ICPADS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020350
Score 2.277455
Snippet Accurate fall detection systems are vital to address the global health concern of elderly falls, which often lead to severe injuries, hospitalizations, and...
SourceID ieee
SourceType Publisher
StartPage 100
SubjectTerms Cameras
Fall detection
Fuses
Human Sensing
Knowledge transfer
Millimeter wave communication
Multi-modal
Quality assessment
Radar
Radar detection
Sensor systems
Sensors
Wireless Sensing
Title VRFfall: Cross Vision-RF Fall Detection with Camera and mmWave Radar
URI https://ieeexplore.ieee.org/document/10763875
WOSCitedRecordID wos001481011800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcDEq4i3PLAa4iT1gw2lRLBUVXl1qxz7IlVqU1TS_n7OblpYGNiiU6RIF33-Pt_58xFyo0VZGFvGzCgrWFpqxQoQmvFSOZFK142NDcMmZL-vRiM9aMzqwQsDAOHwGdz6x9DLd3O79KUyRDiiAQV2i7SklGuz1nZ35VtkjQWYR_ruORs89F5EglHcBcb-juzIzyT6NUMlUEi-_8-PH5DOjxmPDrY0c0h2oDoi-5tpDLQB5zFBfslLM53e08wzH30PrnE2zGmOUdqDOpy6qqgvvdLM-GoUNZWjs9mHWQEdGmcWHfKWP75mT6yZkcAmXIqaOV7GSVcL7VD5F5KDQYgmEZK4hRjS0JcDYcAp5V8zBvUaijaURakswerkhLSreQWnhCrLHbe2iFOHyLaIZIv6QegYUBY5VZyRjs_K-HN9DcZ4k5DzP-IXZM8n3i_0PLok7XqxhCuya1f15GtxHX7eN-9WmOA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSEPzD-tgevVbqNbvVmhgtEJARRuZGufUtIYBgc_P2-loFePHhrXposafPt-_pevz5CbqXIUqUzj6lICxZkMmIpCMl4FhkRhKbhKe2aTYTdbjQcyl5pVndeGABwl8_gzg5dLd_M9MKmyhDhiAYU2NtkpxEEHl_ZtTbnK1skK03AvC7v23HvsfkqfIziOdCzr2TXbVeiX11UHIkk1X9-_oDUfux4tLchmkOyBfkRqa77MdASnscEGSbJ1GTyQGPLffTd-cZZP6EJRmkTCnfvKqc2-UpjZfNRVOWGTqcfagm0r4ya18hb8jSIW6zsksDGPBQFMzzz_IYU0qD2T0MOCkHq15HGNXgQuMocCAUmiuw0pVCxoWxDYRSEGWjpn5BKPsvhlNBIc8O1Tr3AILY1YlmjghDSAxRGJkrPSM2uyuhz9RDGaL0g53_Eb8hea_DSGXXa3ecLsm83wf72ef2SVIr5Aq7Irl4W46_5tdvIbxgmnCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Parallel+and+Distributed+Systems&rft.atitle=VRFfall%3A+Cross+Vision-RF+Fall+Detection+with+Camera+and+mmWave+Radar&rft.au=Zhu%2C+Yanying&rft.au=Song%2C+Haotian&rft.au=Wu%2C+Kaishun&rft.au=Sun%2C+Min&rft.date=2024-10-10&rft.pub=IEEE&rft.eissn=2690-5965&rft.spage=100&rft.epage=107&rft_id=info:doi/10.1109%2FICPADS63350.2024.00023&rft.externalDocID=10763875