Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs

We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate max...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / annual Symposium on Foundations of Computer Science s. 314 - 327
Hlavní autoři: Behnezhad, Soheil, Ghafari, Alma
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 27.10.2024
Témata:
ISSN:2575-8454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate maximum matching for an arbitrarily small constant \varepsilon > 0 . Until recently, the fastest known algorithm for this problem required \Theta(n) time per update where n is the number of vertices. This bound was slightly improved to n/(\log^{\ast}n)^{\Omega(1)} by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to n/2_{-}^{\Omega(\sqrt{\log n})} by Liu [FOCS'24]. Whether this can be improved to n^{1-\Omega(1)} remains a major open problem. In this paper, we introduce Ordered Ruzsa-Szemerédi (ORS) graphs (a generalization of Ruzsa-Szemerédi graphs) and show that the complexity of dynamic matching is closely tied to them. For \delta > 0 , define ORS (\delta n) to be the maximum number of matchings M_{1}, \ldots, 1M_{t} , each of size \delta n , that one can pack in an n-vertex graph such that each matching M_{i} is an induced matching in subgraph M_{1}\cup\ldots\cup M_{i} . We show that there is a randomized algorithm that maintains a (1-\varepsilon) -approximate maximum matching of a fully dynamic graph in amortized update-time. While the value of \text{ORS}(\Theta(n)) remains unknown and is only upper bounded by n^{1-o(1)} , the densest construction known from more than two decades ago only achieves ORS (\Theta(n))\geq n^{1/\Theta(\log\log n)}=n^{o(1)} [Fischer et al. STOC'02]. If this is close to the right bound, then our algorithm achieves an update-time of \sqrt{n^{1+O(\varepsilon)}}^{-} , resolving the aforementioned longstanding open problem in dynamic algorithms in a strong sense.
AbstractList We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate maximum matching for an arbitrarily small constant \varepsilon > 0 . Until recently, the fastest known algorithm for this problem required \Theta(n) time per update where n is the number of vertices. This bound was slightly improved to n/(\log^{\ast}n)^{\Omega(1)} by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to n/2_{-}^{\Omega(\sqrt{\log n})} by Liu [FOCS'24]. Whether this can be improved to n^{1-\Omega(1)} remains a major open problem. In this paper, we introduce Ordered Ruzsa-Szemerédi (ORS) graphs (a generalization of Ruzsa-Szemerédi graphs) and show that the complexity of dynamic matching is closely tied to them. For \delta > 0 , define ORS (\delta n) to be the maximum number of matchings M_{1}, \ldots, 1M_{t} , each of size \delta n , that one can pack in an n-vertex graph such that each matching M_{i} is an induced matching in subgraph M_{1}\cup\ldots\cup M_{i} . We show that there is a randomized algorithm that maintains a (1-\varepsilon) -approximate maximum matching of a fully dynamic graph in amortized update-time. While the value of \text{ORS}(\Theta(n)) remains unknown and is only upper bounded by n^{1-o(1)} , the densest construction known from more than two decades ago only achieves ORS (\Theta(n))\geq n^{1/\Theta(\log\log n)}=n^{o(1)} [Fischer et al. STOC'02]. If this is close to the right bound, then our algorithm achieves an update-time of \sqrt{n^{1+O(\varepsilon)}}^{-} , resolving the aforementioned longstanding open problem in dynamic algorithms in a strong sense.
Author Behnezhad, Soheil
Ghafari, Alma
Author_xml – sequence: 1
  givenname: Soheil
  surname: Behnezhad
  fullname: Behnezhad, Soheil
  email: s.behnezhad@northeastern.edu
  organization: Northeastern University,Khoury College of Computer Science,Boston,USA
– sequence: 2
  givenname: Alma
  surname: Ghafari
  fullname: Ghafari, Alma
  email: ghafari.m@northeastern.edu
  organization: Northeastern University,Khoury College of Computer Science,Boston,USA
BookMark eNotzEtOwzAUQFGDQKIt3UEH3kDC899mhgIpSEWRKIyr19ihRkmonHaQ7oh1sDGQYHTP6E7JRf_ZB0IWDHLGwN2UVbHWjGudc-AyBwBuzsjcGWeFYIppI9k5mXBlVGalkldkOgwfABIUyAm5LY9tO9L7sccu1vQZD_Uu9u8Ue0-r5EMKnr4cTwNm61PoQvr-8pEuE-53wzW5bLAdwvy_M_JWPrwWj9mqWj4Vd6ssMqMPmQcnuAtGoNLW1Wi5-3XdOGykDMF7J4TcCgaSo7dyyxWCkt75hhnmUIsZWfx9Ywhhs0-xwzRuGBilQVnxA6HESdg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS61266.2024.00027
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9798331516741
EISSN 2575-8454
EndPage 327
ExternalDocumentID 10756058
Genre orig-research
GroupedDBID --Z
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i176t-d09329e73a5689ca82973acf9af44eedd9334b31042ad84b25a054d9df1719a63
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419526400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:04:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-d09329e73a5689ca82973acf9af44eedd9334b31042ad84b25a054d9df1719a63
PageCount 14
ParticipantIDs ieee_primary_10756058
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.3242266
Snippet We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is...
SourceID ieee
SourceType Publisher
StartPage 314
SubjectTerms Approximate Matching
Approximation algorithms
Complexity theory
Computer science
Dynamic Algorithms
Heuristic algorithms
Rusza-Szemeredi Graphs
Title Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs
URI https://ieeexplore.ieee.org/document/10756058
WOSCitedRecordID wos001419526400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RigGWQiniWx5YA3Hs2DFroTBAW1FA3SondqQuadW0SPQf8Tv4Y_jctIiBgSWyEimOzrq7F_vePYBLrWLjMqmLfuhNnOVpoHEPXuZMGSklS73c29uj7HaT4VD1K7K658JYa33xmb3CoT_LN5NsgVtlzsNljMd4Nai516zIWuuw64BHyCtuHA3VdafXHrjsLbAMIcIO2WH0W0HFJ5BO459T70Hrh4pH-psksw9btmhCY63FQCrXbMLu06b_ankAN_hn-UFuV3LzxD3zJZNEF4b0Zl6fkzwvlqUOBktkCH99mjG5x97VZQteO3cv7YegUkkIxlSKeWBCB8GUlUzHIlGZRq4s01mudM65-zijGOOpQ3E80ibhaRRrB9OMMjmVVGnBDqFeTAp7BESLxHKuhbtQHjvoyGlkLTUqVyo3gh5DCy0zmq4aYYzWRjn54_4p7KDxMdRH8gzq89nCnsN29j4fl7MLv3zfR7qacg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CggQshdKKNx5YA_EjccxaKEX0JVpQt8qJHalLipoWif4R38GPYbtpEQMDS2TFgy1b995j-557AK6kCJSJpMb7WWtiNI09ae_geUqF4pzT2Mm9vbZ4pxMNh6JXkNUdF0Zr7ZLP9LVturd8NUnm9qrMWDgP7DPeJmwFjBG8pGutHK-BHj4r2HHYFzeNbr1v4ndoExGIrZHtk98aKi6ENMr_HHwfqj9kPNRbh5kD2NBZBcorNQZUGGcF9trrCqz5Idzas-UHulsKziPT55ImkcwU6k6dQid6ni9y6fUXliP89anG6MFWr86r8NK4H9SbXqGT4I0xD2ee8g0IE5pTGYSRSKRly1KZpEKmjJnJKUEpiw2OY0SqiMUkkAaoKaFSzLGQIa1BKZtk-giQDCPNmAzNB7PAgEeGidZYiVSIVIX4GKp2ZUZvy1IYo9WinPzx_xJ2moN2a9R67Dydwq7dCOv4CT-D0mw61-ewnbzPxvn0wm3lN4D5nbk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Fully+Dynamic+Matching+and+Ordered+Ruzsa-Szemer%C3%A9di+Graphs&rft.au=Behnezhad%2C+Soheil&rft.au=Ghafari%2C+Alma&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=314&rft.epage=327&rft_id=info:doi/10.1109%2FFOCS61266.2024.00027&rft.externalDocID=10756058