Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs

We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate max...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / annual Symposium on Foundations of Computer Science s. 314 - 327
Hlavní autori: Behnezhad, Soheil, Ghafari, Alma
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 27.10.2024
Predmet:
ISSN:2575-8454
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate maximum matching for an arbitrarily small constant \varepsilon > 0 . Until recently, the fastest known algorithm for this problem required \Theta(n) time per update where n is the number of vertices. This bound was slightly improved to n/(\log^{\ast}n)^{\Omega(1)} by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to n/2_{-}^{\Omega(\sqrt{\log n})} by Liu [FOCS'24]. Whether this can be improved to n^{1-\Omega(1)} remains a major open problem. In this paper, we introduce Ordered Ruzsa-Szemerédi (ORS) graphs (a generalization of Ruzsa-Szemerédi graphs) and show that the complexity of dynamic matching is closely tied to them. For \delta > 0 , define ORS (\delta n) to be the maximum number of matchings M_{1}, \ldots, 1M_{t} , each of size \delta n , that one can pack in an n-vertex graph such that each matching M_{i} is an induced matching in subgraph M_{1}\cup\ldots\cup M_{i} . We show that there is a randomized algorithm that maintains a (1-\varepsilon) -approximate maximum matching of a fully dynamic graph in amortized update-time. While the value of \text{ORS}(\Theta(n)) remains unknown and is only upper bounded by n^{1-o(1)} , the densest construction known from more than two decades ago only achieves ORS (\Theta(n))\geq n^{1/\Theta(\log\log n)}=n^{o(1)} [Fischer et al. STOC'02]. If this is close to the right bound, then our algorithm achieves an update-time of \sqrt{n^{1+O(\varepsilon)}}^{-} , resolving the aforementioned longstanding open problem in dynamic algorithms in a strong sense.
AbstractList We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate maximum matching for an arbitrarily small constant \varepsilon > 0 . Until recently, the fastest known algorithm for this problem required \Theta(n) time per update where n is the number of vertices. This bound was slightly improved to n/(\log^{\ast}n)^{\Omega(1)} by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to n/2_{-}^{\Omega(\sqrt{\log n})} by Liu [FOCS'24]. Whether this can be improved to n^{1-\Omega(1)} remains a major open problem. In this paper, we introduce Ordered Ruzsa-Szemerédi (ORS) graphs (a generalization of Ruzsa-Szemerédi graphs) and show that the complexity of dynamic matching is closely tied to them. For \delta > 0 , define ORS (\delta n) to be the maximum number of matchings M_{1}, \ldots, 1M_{t} , each of size \delta n , that one can pack in an n-vertex graph such that each matching M_{i} is an induced matching in subgraph M_{1}\cup\ldots\cup M_{i} . We show that there is a randomized algorithm that maintains a (1-\varepsilon) -approximate maximum matching of a fully dynamic graph in amortized update-time. While the value of \text{ORS}(\Theta(n)) remains unknown and is only upper bounded by n^{1-o(1)} , the densest construction known from more than two decades ago only achieves ORS (\Theta(n))\geq n^{1/\Theta(\log\log n)}=n^{o(1)} [Fischer et al. STOC'02]. If this is close to the right bound, then our algorithm achieves an update-time of \sqrt{n^{1+O(\varepsilon)}}^{-} , resolving the aforementioned longstanding open problem in dynamic algorithms in a strong sense.
Author Behnezhad, Soheil
Ghafari, Alma
Author_xml – sequence: 1
  givenname: Soheil
  surname: Behnezhad
  fullname: Behnezhad, Soheil
  email: s.behnezhad@northeastern.edu
  organization: Northeastern University,Khoury College of Computer Science,Boston,USA
– sequence: 2
  givenname: Alma
  surname: Ghafari
  fullname: Ghafari, Alma
  email: ghafari.m@northeastern.edu
  organization: Northeastern University,Khoury College of Computer Science,Boston,USA
BookMark eNotzEtOwzAUQFGDQKIt3UEH3kDC899mhgIpSEWRKIyr19ihRkmonHaQ7oh1sDGQYHTP6E7JRf_ZB0IWDHLGwN2UVbHWjGudc-AyBwBuzsjcGWeFYIppI9k5mXBlVGalkldkOgwfABIUyAm5LY9tO9L7sccu1vQZD_Uu9u8Ue0-r5EMKnr4cTwNm61PoQvr-8pEuE-53wzW5bLAdwvy_M_JWPrwWj9mqWj4Vd6ssMqMPmQcnuAtGoNLW1Wi5-3XdOGykDMF7J4TcCgaSo7dyyxWCkt75hhnmUIsZWfx9Ywhhs0-xwzRuGBilQVnxA6HESdg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS61266.2024.00027
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9798331516741
EISSN 2575-8454
EndPage 327
ExternalDocumentID 10756058
Genre orig-research
GroupedDBID --Z
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i176t-d09329e73a5689ca82973acf9af44eedd9334b31042ad84b25a054d9df1719a63
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419526400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:04:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-d09329e73a5689ca82973acf9af44eedd9334b31042ad84b25a054d9df1719a63
PageCount 14
ParticipantIDs ieee_primary_10756058
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.3242266
Snippet We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is...
SourceID ieee
SourceType Publisher
StartPage 314
SubjectTerms Approximate Matching
Approximation algorithms
Complexity theory
Computer science
Dynamic Algorithms
Heuristic algorithms
Rusza-Szemeredi Graphs
Title Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs
URI https://ieeexplore.ieee.org/document/10756058
WOSCitedRecordID wos001419526400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BxQBLoRTxLw-shsR2Ypu1UFhoKwpSt-oSO1KXFDUtEn0jnoMXw3bTIgYGNssebJ11f_Z99wFcWWG4yDlSjz-gotCGojOBNE8Vt7xwGUOSBbIJ2eup0UgParB6wMJYa0Pxmb32w_CXb6b5wj-VOQ2Xif_G24ZtKeUKrLU2uy7wiESNjYsjfdPtd4bOe6e-DIH5DtkR-82gEhxIt_nPrfeh_QPFI4ONkzmALVu2oLnmYiC1arZg72nTf7U6hFufWX6QuxXdPHFroWSSYGlIfxb4OcnzYlkhHS49Qvjr00zIg-9dXbXhtXv_0nmkNUsCncQynVMTuRBMW8kxSZXO0WNlOeaFxkIIdzijOReZi-IEQ6NExhJ0YZrRpohlrDHlR9Aop6U9BiJTw61lBRcYCSktKpuYmCcKTaZYjCfQ9pIZv60aYYzXQjn9Y_4Mdr3wvaln8hwa89nCXsBO_j6fVLPLcH3fiQybZw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CggQshVLEGw-shsR24pi1UIroS7RI3SondqQsKWpaJPpHfAc_hu2mRQwMbJY92LrWfdn33ANwrZmiLKESW_wBZqlQWBoTiJMwopqmJmMIYkc2wbvdaDQS_RKs7rAwWmtXfKZv7ND95atJMrdPZUbDeWC_8TZhK2CM-Eu41srwmtDDYyU6zvfEbbPXGBj_HdpCBGJ7ZHvkN4eKcyHN6j8334f6DxgP9ddu5gA2dF6D6oqNAZXKWYO9zroDa3EIdza3_ED3S8J5ZNZc0SSSuUK9qWPoRC_zRSHxYGExwl-fKkOPtnt1UYfX5sOw0cIlTwLOfB7OsPJMECY0pzIII5FIi5alMkmFTBkzh1OCUhabOI4RqSIWk0CaQE0JlfrcFzKkR1DJJ7k-BsRDRbUmKWXSY5xrGelA-TSIpIoj4ssTqFvJjN-WrTDGK6Gc_jF_BTutYac9bj91n89g116ENfyEn0NlNp3rC9hO3mdZMb10V_kNzsuerg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Fully+Dynamic+Matching+and+Ordered+Ruzsa-Szemer%C3%A9di+Graphs&rft.au=Behnezhad%2C+Soheil&rft.au=Ghafari%2C+Alma&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=314&rft.epage=327&rft_id=info:doi/10.1109%2FFOCS61266.2024.00027&rft.externalDocID=10756058