Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs
We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate max...
Uložené v:
| Vydané v: | Proceedings / annual Symposium on Foundations of Computer Science s. 314 - 327 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
27.10.2024
|
| Predmet: | |
| ISSN: | 2575-8454 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate maximum matching for an arbitrarily small constant \varepsilon > 0 . Until recently, the fastest known algorithm for this problem required \Theta(n) time per update where n is the number of vertices. This bound was slightly improved to n/(\log^{\ast}n)^{\Omega(1)} by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to n/2_{-}^{\Omega(\sqrt{\log n})} by Liu [FOCS'24]. Whether this can be improved to n^{1-\Omega(1)} remains a major open problem. In this paper, we introduce Ordered Ruzsa-Szemerédi (ORS) graphs (a generalization of Ruzsa-Szemerédi graphs) and show that the complexity of dynamic matching is closely tied to them. For \delta > 0 , define ORS (\delta n) to be the maximum number of matchings M_{1}, \ldots, 1M_{t} , each of size \delta n , that one can pack in an n-vertex graph such that each matching M_{i} is an induced matching in subgraph M_{1}\cup\ldots\cup M_{i} . We show that there is a randomized algorithm that maintains a (1-\varepsilon) -approximate maximum matching of a fully dynamic graph in amortized update-time. While the value of \text{ORS}(\Theta(n)) remains unknown and is only upper bounded by n^{1-o(1)} , the densest construction known from more than two decades ago only achieves ORS (\Theta(n))\geq n^{1/\Theta(\log\log n)}=n^{o(1)} [Fischer et al. STOC'02]. If this is close to the right bound, then our algorithm achieves an update-time of \sqrt{n^{1+O(\varepsilon)}}^{-} , resolving the aforementioned longstanding open problem in dynamic algorithms in a strong sense. |
|---|---|
| AbstractList | We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a (1-\varepsilon) -approximate maximum matching for an arbitrarily small constant \varepsilon > 0 . Until recently, the fastest known algorithm for this problem required \Theta(n) time per update where n is the number of vertices. This bound was slightly improved to n/(\log^{\ast}n)^{\Omega(1)} by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to n/2_{-}^{\Omega(\sqrt{\log n})} by Liu [FOCS'24]. Whether this can be improved to n^{1-\Omega(1)} remains a major open problem. In this paper, we introduce Ordered Ruzsa-Szemerédi (ORS) graphs (a generalization of Ruzsa-Szemerédi graphs) and show that the complexity of dynamic matching is closely tied to them. For \delta > 0 , define ORS (\delta n) to be the maximum number of matchings M_{1}, \ldots, 1M_{t} , each of size \delta n , that one can pack in an n-vertex graph such that each matching M_{i} is an induced matching in subgraph M_{1}\cup\ldots\cup M_{i} . We show that there is a randomized algorithm that maintains a (1-\varepsilon) -approximate maximum matching of a fully dynamic graph in amortized update-time. While the value of \text{ORS}(\Theta(n)) remains unknown and is only upper bounded by n^{1-o(1)} , the densest construction known from more than two decades ago only achieves ORS (\Theta(n))\geq n^{1/\Theta(\log\log n)}=n^{o(1)} [Fischer et al. STOC'02]. If this is close to the right bound, then our algorithm achieves an update-time of \sqrt{n^{1+O(\varepsilon)}}^{-} , resolving the aforementioned longstanding open problem in dynamic algorithms in a strong sense. |
| Author | Behnezhad, Soheil Ghafari, Alma |
| Author_xml | – sequence: 1 givenname: Soheil surname: Behnezhad fullname: Behnezhad, Soheil email: s.behnezhad@northeastern.edu organization: Northeastern University,Khoury College of Computer Science,Boston,USA – sequence: 2 givenname: Alma surname: Ghafari fullname: Ghafari, Alma email: ghafari.m@northeastern.edu organization: Northeastern University,Khoury College of Computer Science,Boston,USA |
| BookMark | eNotzEtOwzAUQFGDQKIt3UEH3kDC899mhgIpSEWRKIyr19ihRkmonHaQ7oh1sDGQYHTP6E7JRf_ZB0IWDHLGwN2UVbHWjGudc-AyBwBuzsjcGWeFYIppI9k5mXBlVGalkldkOgwfABIUyAm5LY9tO9L7sccu1vQZD_Uu9u8Ue0-r5EMKnr4cTwNm61PoQvr-8pEuE-53wzW5bLAdwvy_M_JWPrwWj9mqWj4Vd6ssMqMPmQcnuAtGoNLW1Wi5-3XdOGykDMF7J4TcCgaSo7dyyxWCkt75hhnmUIsZWfx9Ywhhs0-xwzRuGBilQVnxA6HESdg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS61266.2024.00027 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 9798331516741 |
| EISSN | 2575-8454 |
| EndPage | 327 |
| ExternalDocumentID | 10756058 |
| Genre | orig-research |
| GroupedDBID | --Z 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i176t-d09329e73a5689ca82973acf9af44eedd9334b31042ad84b25a054d9df1719a63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419526400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 03:04:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-d09329e73a5689ca82973acf9af44eedd9334b31042ad84b25a054d9df1719a63 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10756058 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-27 |
| PublicationDateYYYYMMDD | 2024-10-27 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / annual Symposium on Foundations of Computer Science |
| PublicationTitleAbbrev | FOCS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0040504 |
| Score | 2.3242266 |
| Snippet | We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 314 |
| SubjectTerms | Approximate Matching Approximation algorithms Complexity theory Computer science Dynamic Algorithms Heuristic algorithms Rusza-Szemeredi Graphs |
| Title | Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs |
| URI | https://ieeexplore.ieee.org/document/10756058 |
| WOSCitedRecordID | wos001419526400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BxQBLoRTxLw-shsR2Ypu1UFhoKwpSt-oSO1KXFDUtEn0jnoMXw3bTIgYGNssebJ11f_Z99wFcWWG4yDlSjz-gotCGojOBNE8Vt7xwGUOSBbIJ2eup0UgParB6wMJYa0Pxmb32w_CXb6b5wj-VOQ2Xif_G24ZtKeUKrLU2uy7wiESNjYsjfdPtd4bOe6e-DIH5DtkR-82gEhxIt_nPrfeh_QPFI4ONkzmALVu2oLnmYiC1arZg72nTf7U6hFufWX6QuxXdPHFroWSSYGlIfxb4OcnzYlkhHS49Qvjr00zIg-9dXbXhtXv_0nmkNUsCncQynVMTuRBMW8kxSZXO0WNlOeaFxkIIdzijOReZi-IEQ6NExhJ0YZrRpohlrDHlR9Aop6U9BiJTw61lBRcYCSktKpuYmCcKTaZYjCfQ9pIZv60aYYzXQjn9Y_4Mdr3wvaln8hwa89nCXsBO_j6fVLPLcH3fiQybZw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CggQshVLEGw-shsR24pi1UIroS7RI3SondqQsKWpaJPpHfAc_hu2mRQwMbJY92LrWfdn33ANwrZmiLKESW_wBZqlQWBoTiJMwopqmJmMIYkc2wbvdaDQS_RKs7rAwWmtXfKZv7ND95atJMrdPZUbDeWC_8TZhK2CM-Eu41srwmtDDYyU6zvfEbbPXGBj_HdpCBGJ7ZHvkN4eKcyHN6j8334f6DxgP9ddu5gA2dF6D6oqNAZXKWYO9zroDa3EIdza3_ED3S8J5ZNZc0SSSuUK9qWPoRC_zRSHxYGExwl-fKkOPtnt1UYfX5sOw0cIlTwLOfB7OsPJMECY0pzIII5FIi5alMkmFTBkzh1OCUhabOI4RqSIWk0CaQE0JlfrcFzKkR1DJJ7k-BsRDRbUmKWXSY5xrGelA-TSIpIoj4ssTqFvJjN-WrTDGK6Gc_jF_BTutYac9bj91n89g116ENfyEn0NlNp3rC9hO3mdZMb10V_kNzsuerg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Fully+Dynamic+Matching+and+Ordered+Ruzsa-Szemer%C3%A9di+Graphs&rft.au=Behnezhad%2C+Soheil&rft.au=Ghafari%2C+Alma&rft.date=2024-10-27&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=314&rft.epage=327&rft_id=info:doi/10.1109%2FFOCS61266.2024.00027&rft.externalDocID=10756058 |