RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection
Self-supervised feature reconstruction methods have shown promising advances in industrial image anomaly de-tection and localization. Despite this progress, these meth-ods still face challenges in synthesizing realistic and di-verse anomaly samples, as well as addressing the feature redundancy and p...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 16699 - 16708 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
16.06.2024
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Self-supervised feature reconstruction methods have shown promising advances in industrial image anomaly de-tection and localization. Despite this progress, these meth-ods still face challenges in synthesizing realistic and di-verse anomaly samples, as well as addressing the feature redundancy and pre-training bias of pre-trained feature. In this work, we introduce RealNet, a feature reconstruction network with realistic synthetic anomaly and adaptive feature selection. It is incorporated with three key inno-vations: First, we propose Strength-controllable Diffusion Anomaly Synthesis (SDAS), a diffusion process-based syn-thesis strategy capable of generating samples with varying anomaly strengths that mimic the distribution of real anomalous samples. Second, we develop Anomaly-aware Features Selection (A FS), a method for selecting repre-sentative and discriminative pre-trained feature subsets to improve anomaly detection performance while controlling computational costs. Third, we introduce Reconstruction Residuals Selection (RRS), a strategy that adaptively selects discriminative residuals for comprehensive identification of anomalous regions across multiple levels of granularity. We assess RealNet onfour benchmark datasets, and our results demonstrate significant improvements in both Image AU-Rae and Pixel AUROC compared to the current state-of-the-art methods. The code, data, and models are available at https://github.com/cnulab/RealNet. |
|---|---|
| AbstractList | Self-supervised feature reconstruction methods have shown promising advances in industrial image anomaly de-tection and localization. Despite this progress, these meth-ods still face challenges in synthesizing realistic and di-verse anomaly samples, as well as addressing the feature redundancy and pre-training bias of pre-trained feature. In this work, we introduce RealNet, a feature reconstruction network with realistic synthetic anomaly and adaptive feature selection. It is incorporated with three key inno-vations: First, we propose Strength-controllable Diffusion Anomaly Synthesis (SDAS), a diffusion process-based syn-thesis strategy capable of generating samples with varying anomaly strengths that mimic the distribution of real anomalous samples. Second, we develop Anomaly-aware Features Selection (A FS), a method for selecting repre-sentative and discriminative pre-trained feature subsets to improve anomaly detection performance while controlling computational costs. Third, we introduce Reconstruction Residuals Selection (RRS), a strategy that adaptively selects discriminative residuals for comprehensive identification of anomalous regions across multiple levels of granularity. We assess RealNet onfour benchmark datasets, and our results demonstrate significant improvements in both Image AU-Rae and Pixel AUROC compared to the current state-of-the-art methods. The code, data, and models are available at https://github.com/cnulab/RealNet. |
| Author | Zhang, Ximiao Xu, Min Zhou, Xiuzhuang |
| Author_xml | – sequence: 1 givenname: Ximiao surname: Zhang fullname: Zhang, Ximiao email: 2211002048@cnu.edu.cn organization: College of Information and Engineering, Capital Normal University – sequence: 2 givenname: Min surname: Xu fullname: Xu, Min email: xumin@cnu.edu.cn organization: College of Information and Engineering, Capital Normal University – sequence: 3 givenname: Xiuzhuang surname: Zhou fullname: Zhou, Xiuzhuang email: xiuzhuang.zhou@bupt.edu.cn organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications |
| BookMark | eNo9j81OAjEUhavRRETegEVfYLC3d9qZuiMoakLUgLpxQWp7G6rDjJkpIby9EIyr8yXnJzmX7KxuamJsCGIEIMz15P1lrmSBOJJC5iMBqhQnbGAKU6ISqFAIfcp6IDRm2oC5YIOu-xJCoATQpuyxjznZ6onSDR_zKdm0aYkvqCKXYlPzvbFt2m--jWnFD8nYpej4YlenFR1oXDdrW-14aNp_vqV0rF-x82CrjgZ_2mdv07vXyUM2e75_nIxnWYRCp8whFJKMd8F-Bo_CBaFLrXJdSB-MVTaH3Aefh1JpadF6UBIJfRGc9E4B9tnwuBuJaPnTxrVtd8v9aVUiAP4CPtRW9g |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52733.2024.01580 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9798350353006 |
| EISSN | 1063-6919 |
| EndPage | 16708 |
| ExternalDocumentID | 10658311 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62177034,61972046 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i176t-c3172e9dcfabfd30cf068654672df9a5a414dfd4f8562a3ad1523e3d7fc2dc513 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342442408010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:00:57 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-c3172e9dcfabfd30cf068654672df9a5a414dfd4f8562a3ad1523e3d7fc2dc513 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10658311 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-June-16 |
| PublicationDateYYYYMMDD | 2024-06-16 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.5999496 |
| Snippet | Self-supervised feature reconstruction methods have shown promising advances in industrial image anomaly de-tection and localization. Despite this progress,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 16699 |
| SubjectTerms | anomaly detection anomaly synthesis Computer vision Data models Feature extraction feature selection Location awareness Pattern recognition Reconstruction algorithms Redundancy |
| Title | RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection |
| URI | https://ieeexplore.ieee.org/document/10658311 |
| WOSCitedRecordID | wos001342442408010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86PHiaHxO_ycFrZ9t8Ld7GdHiQMjYdAw8jTV5goK1snbD_3iSt04sHL-VRUgIvpL9fXt7vPYRumIk9Lssot0pE1EgVSQ48ojln1GhNWejWMH0SWdabzeSoEasHLQwAhOQz6Hoz3OWbUq99qMztcIeXxCt5d4UQtVhrG1Ah7ijDZa-RxyWxvB1MR2NfX4y4Y2BKuw74fPHHX01UAoYM2_-c_QB1ftR4eLTFmUO0A8URajf0ETebc3WMXseO9GVQ3eE-9sxuvQQ8CW1unO9xVud7Yx94xX5kqNCMJ5vCUUBv9YvyXb1tsGOxW_seqvrzDnoZPjwPHqOmd0K0SASvIu14QQrSaKtya0isrdeCMPdbTI2ViimaUGMNtT1HgBRRxuE4AWKE1anRLCEnqFWUBZwibJmwORduqAEqgClrVSqV5nGau6c6Qx3vrPlHXR5j_u2n8z_eX6B9vx4-3yrhl6hVLddwhfb0Z7VYLa_Don4BeGekqw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT3VR8W3OXjd2t08tvFWqqViXUpbS8FDyeYBBd1KuxX6751k1-rFg5dlWLIEJmS_L5P5ZhC6YbrhcFkEqZVxQLWQgeCGBzTljGqlKPPdGsa9OEmak4nol2J1r4UxxvjkM1N3pr_L13O1cqEy2OGAl8QpebcZpVFYyLU2IRUChxkumqVALmyI2_a4P3AVxggcBCNaB-hz5R9_tVHxKNKp_nP-fVT70ePh_gZpDtCWyQ5RtSSQuNyeyyP0OgDal5j8Drew43arhcFD3-gGvI-TIuMbu9ArdiN9jWY8XGdAAp3Vyubv8m2Ngcdu7HuTF5_X0EvnYdTuBmX3hGAWxjwPFDCDyAitrEytJg1lnRqEwY8x0lZIJmlItdXUNoECSSI1IDkxRMdWRVqxkByjSjbPzAnClsU25TEM1YbGhklrZSSk4o0ohac8RTXnrOlHUSBj-u2nsz_eX6Pd7ui5N-09Jk_naM-tjcu-CvkFquSLlblEO-ozny0XV36BvwA1T6fy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=RealNet%3A+A+Feature+Selection+Network+with+Realistic+Synthetic+Anomaly+for+Anomaly+Detection&rft.au=Zhang%2C+Ximiao&rft.au=Xu%2C+Min&rft.au=Zhou%2C+Xiuzhuang&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=16699&rft.epage=16708&rft_id=info:doi/10.1109%2FCVPR52733.2024.01580&rft.externalDocID=10658311 |