Brain-Inspired Hyperdimensional Computing in the Wild: Lightweight Symbolic Learning for Sensorimotor Controls of Wheeled Robots
Efficiency and performance are significant challenges in applying Machine Learning (ML) to robotics, especially in energy-constrained real-world scenarios. In this context, Hyperdimensional Computing offers an energy-efficient alternative but has been underexplored in robotics. We introduce ReactHD,...
Uložené v:
| Vydané v: | 2024 IEEE International Conference on Robotics and Automation (ICRA) s. 5176 - 5182 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
13.05.2024
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Efficiency and performance are significant challenges in applying Machine Learning (ML) to robotics, especially in energy-constrained real-world scenarios. In this context, Hyperdimensional Computing offers an energy-efficient alternative but has been underexplored in robotics. We introduce ReactHD, an HDC-based framework tailored for perception-action-based learning for sensorimotor controls of robot tasks. ReactHD employs hypervectors to encode sensory inputs and learn the suitable high-dimensional pattern for robot actions. It also integrates two HD-based lightweight symbolic learning techniques: HDC-based supervised learning by demonstration (HDC-IL) and HD-Reinforcement Learning (HDC-RL) to enable precise, reactive robot behaviors in complex environments. Our empirical evaluations show that ReactHD achieves robust and accurate learning outcomes comparable to state-of-the-art deep learning while substantially improving the performance and energy consumption efficiency by 14.2× and 15.3×. To the best of our knowledge, ReactHD is the first HDC-based framework deployed in real-world settings. |
|---|---|
| DOI: | 10.1109/ICRA57147.2024.10610176 |