FLoomChecker: Repelling Free-riders in Federated Learning via Training Integrity Verification
Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the transfer of data to a central server and protecting users' privacy. However, some "lazy" clients may adopt the strategy of fabricatin...
Uloženo v:
| Vydáno v: | Proceedings - International Conference on Parallel and Distributed Systems s. 194 - 201 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
10.10.2024
|
| Témata: | |
| ISSN: | 2690-5965 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the transfer of data to a central server and protecting users' privacy. However, some "lazy" clients may adopt the strategy of fabricating false model local updates in an attempt to "free-riding" without actually contributing real data or consuming local computational resources. To address this issue, we propose FLoomChecker, an integrity detection scheme for federated learning training models. The scheme combines the techniques of trusted execution environments and Bloom filters to efficiently identify clients that do not train honestly by committing and proving. We conducted experimental evaluations of FLoomChecker, examining three main aspects: query time, build time, and memory footprint in trusted execution environment (TEE). The experimental results demonstrate the effectiveness of our scheme, and its performance improves as the number of local training rounds increases. |
|---|---|
| AbstractList | Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the transfer of data to a central server and protecting users' privacy. However, some "lazy" clients may adopt the strategy of fabricating false model local updates in an attempt to "free-riding" without actually contributing real data or consuming local computational resources. To address this issue, we propose FLoomChecker, an integrity detection scheme for federated learning training models. The scheme combines the techniques of trusted execution environments and Bloom filters to efficiently identify clients that do not train honestly by committing and proving. We conducted experimental evaluations of FLoomChecker, examining three main aspects: query time, build time, and memory footprint in trusted execution environment (TEE). The experimental results demonstrate the effectiveness of our scheme, and its performance improves as the number of local training rounds increases. |
| Author | Zhu, Hongzi Chang, Shan Liang, Guanghao Dai, Minghui |
| Author_xml | – sequence: 1 givenname: Guanghao surname: Liang fullname: Liang, Guanghao email: guanghao@mail.dhu.edu.cn organization: Donghua University,School of Computer Science and Technology,Shanghai,China – sequence: 2 givenname: Shan surname: Chang fullname: Chang, Shan email: changshan@dhu.edu.cn organization: Donghua University,School of Computer Science and Technology,Shanghai,China – sequence: 3 givenname: Minghui surname: Dai fullname: Dai, Minghui email: minghuidai@dhu.edu.cn organization: Donghua University,School of Computer Science and Technology,Shanghai,China – sequence: 4 givenname: Hongzi surname: Zhu fullname: Zhu, Hongzi email: hongzi@cs.sjtu.edu.cn organization: Shanghai Jiaotong University,Department of Computer Science and Engineering,Shanghai,China |
| BookMark | eNotj19LwzAUxaMouM19A5F-gc6b3iZpfBvV6qCg6PRNRtbczOiWjrQI-_bWP0_nd-CcA2fMTkIbiLFLDjPOQV8tysf5zbNEFDDLIMtnAID5EZtqpQtELrjQUh6zUSY1pAOLMzbuug-ADIbOiL1VddvuyndqPileJ0-0p-3Wh01SRaI0ekuxS3xIKhrI9GSTmkwMP4kvb5JlNP7XLEJPm-j7Q_JK0TvfmN634ZydOrPtaPqvE_ZS3S7L-7R-uFuU8zr1XMk-NSqXrkGERlhFDocj4NBqQKnAcqe4MsQt5BILqRtTOJtpjus1COSNEDhhF3-7nohW--h3Jh5WHJREVWT4Da75VnU |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPADS63350.2024.00034 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331515966 |
| EISSN | 2690-5965 |
| EndPage | 201 |
| ExternalDocumentID | 10763782 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of Shanghai funderid: 10.13039/100007219 |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i176t-a746fc330c5d7ef30240f3d903670d1f717ae1d0463869ca8fd2913bb0531c553 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481011800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:59:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-a746fc330c5d7ef30240f3d903670d1f717ae1d0463869ca8fd2913bb0531c553 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10763782 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-10 |
| PublicationDateYYYYMMDD | 2024-10-10 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - International Conference on Parallel and Distributed Systems |
| PublicationTitleAbbrev | ICPADS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020350 |
| Score | 2.284703 |
| Snippet | Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 194 |
| SubjectTerms | Bloom filter Computational modeling Data models Data privacy Federated learning Filters Free-rider attack Servers TEE Training Training data Training integrity verification |
| Title | FLoomChecker: Repelling Free-riders in Federated Learning via Training Integrity Verification |
| URI | https://ieeexplore.ieee.org/document/10763782 |
| WOSCitedRecordID | wos001481011800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcBUPor4lgdWQxwnccyGChGVqqoSpeqCKic-Q5YUpR-_H5-bFhYGNsuLJdund8--946QWxHmkU4FZ1rZkEWpTpg2QcxSEJFxiBUaL4-eDORwmE6natSI1b0WBgB88Rnc4dD_5Zt5scKnMhfhLhocpLVIS0q5EWvt2BV-kTUSYB6o-35v9Pj0mgg361hgiB7ZAXZH_tVDxUNI1vnn4oek-yPGo6MdzByRPaiOSWfbjYE2wXlC3rOBS4J7n4CFEg_UZdbg_bZpVgOwGuV2C1pWNEP7CJdhGtp4q37QdanpuOkVQfveQMIl53Tibqdt3vS65C17HvdeWNM8gZVcJkumZZTYQoigiI0EK9DLzAqjAnRsM9w6GqeBGzQMSxNV6NSaUHGR5xiVRRyLU9Ku5hWcEWogwkqvNBJCR0Y5CqIS65ijjU2uLA_OSRe3a_a18ceYbXfq4o_5S3KAJ4IIwIMr0l7WK7gm-8V6WS7qG3-q3xfXovE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgIMFUHkW88cBqiGPnYTZUiFoRqkqUqguqnNguWVKUPr4fXzctLAxslhdLtq_OPfY95yJ0y_yMy5hRIoXxCY9lSKTyAhJrxpVFLF85efQwjXq9eDQS_Vqs7rQwWmtXfKbvYOj-8tU0X8BTmY1wGw0W0rbRTsC5T1dyrQ2_gk-yWgRMPXHfbfcfn95CZmctD_TBJduD_si_uqg4EEma_1z-ALV-5Hi4vwGaQ7SlyyPUXPdjwHV4HqOPJLVpcPtTQ6nEA7a5tXaO2ziptCYVCO5muChxAgYSNsdUuHZXneBlIfGg7haBu85CwqbneGjvp6lf9VroPXketDukbp9AChqFcyIjHpqcMS8PVKQNAzczw5TwwLNNUWOJnNRUgWVYHIpcxkb5grIsg7jMg4CdoEY5LfUpwkpzqPWKOWOSK2FJiAiN5Y4mUJkw1DtDLdiu8dfKIWO83qnzP-Zv0F5n8JqO027v5QLtw-kAHlDvEjXm1UJfod18OS9m1bU74W_AY6Y4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Parallel+and+Distributed+Systems&rft.atitle=FLoomChecker%3A+Repelling+Free-riders+in+Federated+Learning+via+Training+Integrity+Verification&rft.au=Liang%2C+Guanghao&rft.au=Chang%2C+Shan&rft.au=Dai%2C+Minghui&rft.au=Zhu%2C+Hongzi&rft.date=2024-10-10&rft.pub=IEEE&rft.eissn=2690-5965&rft.spage=194&rft.epage=201&rft_id=info:doi/10.1109%2FICPADS63350.2024.00034&rft.externalDocID=10763782 |