FLoomChecker: Repelling Free-riders in Federated Learning via Training Integrity Verification

Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the transfer of data to a central server and protecting users' privacy. However, some "lazy" clients may adopt the strategy of fabricatin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference on Parallel and Distributed Systems s. 194 - 201
Hlavní autoři: Liang, Guanghao, Chang, Shan, Dai, Minghui, Zhu, Hongzi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 10.10.2024
Témata:
ISSN:2690-5965
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the transfer of data to a central server and protecting users' privacy. However, some "lazy" clients may adopt the strategy of fabricating false model local updates in an attempt to "free-riding" without actually contributing real data or consuming local computational resources. To address this issue, we propose FLoomChecker, an integrity detection scheme for federated learning training models. The scheme combines the techniques of trusted execution environments and Bloom filters to efficiently identify clients that do not train honestly by committing and proving. We conducted experimental evaluations of FLoomChecker, examining three main aspects: query time, build time, and memory footprint in trusted execution environment (TEE). The experimental results demonstrate the effectiveness of our scheme, and its performance improves as the number of local training rounds increases.
AbstractList Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the transfer of data to a central server and protecting users' privacy. However, some "lazy" clients may adopt the strategy of fabricating false model local updates in an attempt to "free-riding" without actually contributing real data or consuming local computational resources. To address this issue, we propose FLoomChecker, an integrity detection scheme for federated learning training models. The scheme combines the techniques of trusted execution environments and Bloom filters to efficiently identify clients that do not train honestly by committing and proving. We conducted experimental evaluations of FLoomChecker, examining three main aspects: query time, build time, and memory footprint in trusted execution environment (TEE). The experimental results demonstrate the effectiveness of our scheme, and its performance improves as the number of local training rounds increases.
Author Zhu, Hongzi
Chang, Shan
Liang, Guanghao
Dai, Minghui
Author_xml – sequence: 1
  givenname: Guanghao
  surname: Liang
  fullname: Liang, Guanghao
  email: guanghao@mail.dhu.edu.cn
  organization: Donghua University,School of Computer Science and Technology,Shanghai,China
– sequence: 2
  givenname: Shan
  surname: Chang
  fullname: Chang, Shan
  email: changshan@dhu.edu.cn
  organization: Donghua University,School of Computer Science and Technology,Shanghai,China
– sequence: 3
  givenname: Minghui
  surname: Dai
  fullname: Dai, Minghui
  email: minghuidai@dhu.edu.cn
  organization: Donghua University,School of Computer Science and Technology,Shanghai,China
– sequence: 4
  givenname: Hongzi
  surname: Zhu
  fullname: Zhu, Hongzi
  email: hongzi@cs.sjtu.edu.cn
  organization: Shanghai Jiaotong University,Department of Computer Science and Engineering,Shanghai,China
BookMark eNotj19LwzAUxaMouM19A5F-gc6b3iZpfBvV6qCg6PRNRtbczOiWjrQI-_bWP0_nd-CcA2fMTkIbiLFLDjPOQV8tysf5zbNEFDDLIMtnAID5EZtqpQtELrjQUh6zUSY1pAOLMzbuug-ADIbOiL1VddvuyndqPileJ0-0p-3Wh01SRaI0ekuxS3xIKhrI9GSTmkwMP4kvb5JlNP7XLEJPm-j7Q_JK0TvfmN634ZydOrPtaPqvE_ZS3S7L-7R-uFuU8zr1XMk-NSqXrkGERlhFDocj4NBqQKnAcqe4MsQt5BILqRtTOJtpjus1COSNEDhhF3-7nohW--h3Jh5WHJREVWT4Da75VnU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPADS63350.2024.00034
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331515966
EISSN 2690-5965
EndPage 201
ExternalDocumentID 10763782
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Shanghai
  funderid: 10.13039/100007219
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i176t-a746fc330c5d7ef30240f3d903670d1f717ae1d0463869ca8fd2913bb0531c553
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481011800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:59:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-a746fc330c5d7ef30240f3d903670d1f717ae1d0463869ca8fd2913bb0531c553
PageCount 8
ParticipantIDs ieee_primary_10763782
PublicationCentury 2000
PublicationDate 2024-Oct.-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Parallel and Distributed Systems
PublicationTitleAbbrev ICPADS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020350
Score 2.284703
Snippet Federated learning is a mechanism that allows participating clients to train locally with their own data in order to receive rewards, thus avoiding the...
SourceID ieee
SourceType Publisher
StartPage 194
SubjectTerms Bloom filter
Computational modeling
Data models
Data privacy
Federated learning
Filters
Free-rider attack
Servers
TEE
Training
Training data
Training integrity verification
Title FLoomChecker: Repelling Free-riders in Federated Learning via Training Integrity Verification
URI https://ieeexplore.ieee.org/document/10763782
WOSCitedRecordID wos001481011800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcBUPor4lgdWQxwnccyGChGVqqoSpeqCKic-Q5YUpR-_H5-bFhYGNsuLJdund8--946QWxHmkU4FZ1rZkEWpTpg2QcxSEJFxiBUaL4-eDORwmE6natSI1b0WBgB88Rnc4dD_5Zt5scKnMhfhLhocpLVIS0q5EWvt2BV-kTUSYB6o-35v9Pj0mgg361hgiB7ZAXZH_tVDxUNI1vnn4oek-yPGo6MdzByRPaiOSWfbjYE2wXlC3rOBS4J7n4CFEg_UZdbg_bZpVgOwGuV2C1pWNEP7CJdhGtp4q37QdanpuOkVQfveQMIl53Tibqdt3vS65C17HvdeWNM8gZVcJkumZZTYQoigiI0EK9DLzAqjAnRsM9w6GqeBGzQMSxNV6NSaUHGR5xiVRRyLU9Ku5hWcEWogwkqvNBJCR0Y5CqIS65ijjU2uLA_OSRe3a_a18ceYbXfq4o_5S3KAJ4IIwIMr0l7WK7gm-8V6WS7qG3-q3xfXovE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgIMFUHkW88cBqiGPnYTZUiFoRqkqUqguqnNguWVKUPr4fXzctLAxslhdLtq_OPfY95yJ0y_yMy5hRIoXxCY9lSKTyAhJrxpVFLF85efQwjXq9eDQS_Vqs7rQwWmtXfKbvYOj-8tU0X8BTmY1wGw0W0rbRTsC5T1dyrQ2_gk-yWgRMPXHfbfcfn95CZmctD_TBJduD_si_uqg4EEma_1z-ALV-5Hi4vwGaQ7SlyyPUXPdjwHV4HqOPJLVpcPtTQ6nEA7a5tXaO2ziptCYVCO5muChxAgYSNsdUuHZXneBlIfGg7haBu85CwqbneGjvp6lf9VroPXketDukbp9AChqFcyIjHpqcMS8PVKQNAzczw5TwwLNNUWOJnNRUgWVYHIpcxkb5grIsg7jMg4CdoEY5LfUpwkpzqPWKOWOSK2FJiAiN5Y4mUJkw1DtDLdiu8dfKIWO83qnzP-Zv0F5n8JqO027v5QLtw-kAHlDvEjXm1UJfod18OS9m1bU74W_AY6Y4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Parallel+and+Distributed+Systems&rft.atitle=FLoomChecker%3A+Repelling+Free-riders+in+Federated+Learning+via+Training+Integrity+Verification&rft.au=Liang%2C+Guanghao&rft.au=Chang%2C+Shan&rft.au=Dai%2C+Minghui&rft.au=Zhu%2C+Hongzi&rft.date=2024-10-10&rft.pub=IEEE&rft.eissn=2690-5965&rft.spage=194&rft.epage=201&rft_id=info:doi/10.1109%2FICPADS63350.2024.00034&rft.externalDocID=10763782