Adaptive Point Cloud Clustering Algorithm for Practical Roadside MmWave Radar Systems
Millimeter-Wave radar has been widely applied in the field of autonomous driving due to an excellent performance under complex weather conditions. However, in practical roadside scenarios, the challenge of sparse point clouds leading to clustering difficulties and the issue of large vehicle point cl...
Uložené v:
| Vydané v: | IEEE Vehicular Technology Conference s. 1 - 5 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
24.06.2024
|
| Predmet: | |
| ISSN: | 2577-2465 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Millimeter-Wave radar has been widely applied in the field of autonomous driving due to an excellent performance under complex weather conditions. However, in practical roadside scenarios, the challenge of sparse point clouds leading to clustering difficulties and the issue of large vehicle point clouds dispersing, resulting in fragmentation, currently hampers the practical ap-plication of radar sensors. We propose an adaptive point cloud clustering algorithm based on DBSCAN. First, we propose an improved DBSCAN clustering algorithm based on distance and speed thresholds, which enhances the differentiation of point clouds between different vehicles, and an adaptive ellipse gate strategy to solve the large vehicle point clouds fragmentation problem. Then, a secondary clustering algorithm based on azimuth is exploited, effectively addressing the issues of large vehicle fragmentation and anomalous speed values. Practical roadside experimental results demonstrate that our proposed algorithm significantly outperforms traditional algorithms, showing considerable potential in practical applications. |
|---|---|
| ISSN: | 2577-2465 |
| DOI: | 10.1109/VTC2024-Spring62846.2024.10683343 |