Detection of Water Quality for Health Monitoring through CNN Image Analysis

This work offers an effective method for finding water features using netting stimulated by a convolutional neural network (CNN) countenance research. Conventional techniques for assessing the condition of the water may be difficult and time-consuming. The proposed methodology seeks to expedite this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN) S. 31 - 36
Hauptverfasser: Gour, Ayush Roy, Kumar, Revanth, Reddy, Vidhit, Amruthaluru, Uma Datta, Hariharan, Shanmugasundaram, Kukreja, Vinay
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 03.05.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work offers an effective method for finding water features using netting stimulated by a convolutional neural network (CNN) countenance research. Conventional techniques for assessing the condition of the water may be difficult and time-consuming. The proposed methodology seeks to expedite this procedure by utilizing CNNs' proficiency in concept recognition tasks, which automates and enhances the accuracy of water quality assessment. Data collection, preprocessing, CNN construction, model preparation, and deployment inside a reliable netting application are among the techniques used. This research work establishes the effectiveness of CNN-located methodologies in natural resource protection by a study survey. Building on this support, the proposed technique offers a flexible and convincing real-occasion water status assessment solution. The outcomes of the experiments demonstrate how well the proposed CNN model performs when it comes to correctly classifying water-type limitations from pictures. This strategy makes responsible and convenient use of natural resources possible while also providing significant advantages for community health and preservation.
AbstractList This work offers an effective method for finding water features using netting stimulated by a convolutional neural network (CNN) countenance research. Conventional techniques for assessing the condition of the water may be difficult and time-consuming. The proposed methodology seeks to expedite this procedure by utilizing CNNs' proficiency in concept recognition tasks, which automates and enhances the accuracy of water quality assessment. Data collection, preprocessing, CNN construction, model preparation, and deployment inside a reliable netting application are among the techniques used. This research work establishes the effectiveness of CNN-located methodologies in natural resource protection by a study survey. Building on this support, the proposed technique offers a flexible and convincing real-occasion water status assessment solution. The outcomes of the experiments demonstrate how well the proposed CNN model performs when it comes to correctly classifying water-type limitations from pictures. This strategy makes responsible and convenient use of natural resources possible while also providing significant advantages for community health and preservation.
Author Gour, Ayush Roy
Amruthaluru, Uma Datta
Reddy, Vidhit
Kukreja, Vinay
Kumar, Revanth
Hariharan, Shanmugasundaram
Author_xml – sequence: 1
  givenname: Ayush Roy
  surname: Gour
  fullname: Gour, Ayush Roy
  email: ayushroy1337@gmail.com
  organization: Vardhaman College of Engineering,Department of Computer Science and Engineering,Hyderabad,India
– sequence: 2
  givenname: Revanth
  surname: Kumar
  fullname: Kumar, Revanth
  email: mrevanthkumar6159@gmail.com
  organization: Vardhaman College of Engineering,Department of Computer Science and Engineering,Hyderabad,India
– sequence: 3
  givenname: Vidhit
  surname: Reddy
  fullname: Reddy, Vidhit
  email: vidhitvidhitreddy@gmail.com
  organization: Vardhaman College of Engineering,Department of Computer Science and Engineering,Hyderabad,India
– sequence: 4
  givenname: Uma Datta
  surname: Amruthaluru
  fullname: Amruthaluru, Uma Datta
  email: umadattaa@gmail.com
  organization: Vardhaman College of Engineering,Department of Computer Science and Engineering,Hyderabad,India
– sequence: 5
  givenname: Shanmugasundaram
  surname: Hariharan
  fullname: Hariharan, Shanmugasundaram
  email: mailtos.hariharan@gmail.com
  organization: Vardhaman College of Engineering,Department of Computer Science and Engineering,Hyderabad,India
– sequence: 6
  givenname: Vinay
  surname: Kukreja
  fullname: Kukreja, Vinay
  email: vinay.kukreja@chitkara.edu.in
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India
BookMark eNotjFtLwzAYQCPog879A5H8gdZcmtvjqJcVZ1VUfBxp97UNdImk2UP__Sb6dOBwOFfo3AcPCN1SklNKzF1VvpUftWRC6pwRVuSEEMrP0NIoo7kgXEtemEv0fA8J2uSCx6HD3zZBxO8HO7o04y5EvAY7pgG_BO9SiM73OA0xHPoBl3WNq73tAa-8HefJTdfoorPjBMt_LtDX48Nnuc42r09VudpkjiqZMgWdkoRTDbwVglnRaM4FV0wT9qvITjEhoDU7c7IdM6IBJaAxtOhOleQLdPP3dQCw_Ylub-O8pUQSJQvGj3wdSmQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPCSN62568.2024.00013
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350386349
EndPage 36
ExternalDocumentID 10607642
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-7ef760318e3c552a5b8335372802e3c50d7255ec9d9537f295be75eb914f37263
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289477900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 07 05:31:02 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7ef760318e3c552a5b8335372802e3c50d7255ec9d9537f295be75eb914f37263
PageCount 6
ParticipantIDs ieee_primary_10607642
PublicationCentury 2000
PublicationDate 2024-May-3
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN)
PublicationTitleAbbrev ICPCSN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8836172
Snippet This work offers an effective method for finding water features using netting stimulated by a convolutional neural network (CNN) countenance research....
SourceID ieee
SourceType Publisher
StartPage 31
SubjectTerms CNN
Convolutional neural networks
Data models
Deep Learning
Environmental Monitoring
Image analysis
Natural resources
Pollution
Training
Water quality
Water Quality Assessment
Web Application
Title Detection of Water Quality for Health Monitoring through CNN Image Analysis
URI https://ieeexplore.ieee.org/document/10607642
WOSCitedRecordID wos001289477900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1g4sAJEEN8KweugaZN6uVcmJhA1SRA7Da1iSvtQItGh7R_j5N2wIUDt8iKFMmJYzvx82PsipySLpWywoIphHIohXEOBEW2TmGa0BEIrCWPkOej2cxMe7B6wMIgYig-w2s_DH_5rrEr_1RGFp5S2q3oxt0GgA6s1aN-ZWRuJtk0e8opoE99zVbs22JHnrbgF21K8BrjvX-ut8-GP_g7Pv32LAdsC-tD9nCLbaibqnlT8VeKEZe864Cx5hR58g5QxDsj9a91vOfg4Vme88kbXRx804JkyF7Gd8_ZveipEMRCQtoKwAoCHzQmVuu40KUHSyWeWyr2osgB5QZojTMkrWKjSwSNpZGqollpcsQGdVPjMeMqLq3UFRSjApVCaQoyWqeAUp9YYlGesKHXxPy963Yx3yjh9A_5Gdv1yg5FgMk5G7TLFV6wHfvZLj6Wl2GPvgCULZKf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SBT2pWPHbHLxGm2yyac6rpaV1KVixt7KbzEIPbmXdCv57J9mtevHgLQyBwCSTmUnmzSPkBp2SyqW0zGqTMemAM-OcZhjZOglxhEcgsJZMdJr253MzbcHqAQsDAKH4DG79MPzlu5Vd-6cytPAY026JN-62klLwBq7V4n55z9yNkmnylGJIH_uqLeEbY_c8ccEv4pTgNwb7_1zxgHR_EHh0-u1bDskWlEdkfA91qJwq6aqgLxglVrTpgfFJMfakDaSINmbq3-toy8JDkzSlo1e8OuimCUmXPA8eZsmQtWQIbMl1XDMNhQ6M0BBZpUSmcg-Xijy7lPCintOYHYA1zqC0EEbloBXkhssCZ8XRMemUqxJOCJUit1wVOutnICVwk6HZOqkx-REcsvyUdL0mFm9Nv4vFRglnf8ivye5w9jhZTEbp-JzsecWHksDognTqag2XZMd-1Mv36irs1xdmmZXm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Pervasive+Computing+and+Social+Networking+%28ICPCSN%29&rft.atitle=Detection+of+Water+Quality+for+Health+Monitoring+through+CNN+Image+Analysis&rft.au=Gour%2C+Ayush+Roy&rft.au=Kumar%2C+Revanth&rft.au=Reddy%2C+Vidhit&rft.au=Amruthaluru%2C+Uma+Datta&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=31&rft.epage=36&rft_id=info:doi/10.1109%2FICPCSN62568.2024.00013&rft.externalDocID=10607642