Hamiltonian-Based Quantum Reinforcement Learning for Neural Combinatorial Optimization

Advancements in Quantum Computing (QC) and Neural Combinatorial Optimization (NCO) represent promising steps in tackling complex computational challenges. On the one hand, Variational Quantum Algorithms such as QAOA can be used to solve a wide range of combinatorial optimization problems. On the oth...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 IEEE International Conference on Quantum Computing and Engineering (QCE) Ročník 1; s. 1617 - 1627
Hlavní autoři: Kruse, Georg, Coelho, Rodrigo, Rosskopf, Andreas, Wille, Robert, Lorenz, Jeanette Miriam
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 15.09.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Advancements in Quantum Computing (QC) and Neural Combinatorial Optimization (NCO) represent promising steps in tackling complex computational challenges. On the one hand, Variational Quantum Algorithms such as QAOA can be used to solve a wide range of combinatorial optimization problems. On the other hand, the same class of problems can be solved by NCO, a method that has shown promising results, particularly since the introduction of Graph Neural Networks. Given recent advances in both research areas, we introduce Hamiltonian-based Quantum Reinforcement Learning (QRL), an approach at the intersection of QC and NCO. We model our ansatzes directly on the combinatorial optimization problem's Hamiltonian formulation, which allows us to apply our approach to a broad class of problems. Our ansatzes show favourable trainability properties when compared to the hardware efficient ansatzes, while also not being limited to graph-based problems, unlike previous approaches. In this work, we evaluate the performance of Hamiltonian-based QRL on a diverse set of combinatorial optimization problems to demonstrate the broad applicability of our approach and compare it to QAOA.
AbstractList Advancements in Quantum Computing (QC) and Neural Combinatorial Optimization (NCO) represent promising steps in tackling complex computational challenges. On the one hand, Variational Quantum Algorithms such as QAOA can be used to solve a wide range of combinatorial optimization problems. On the other hand, the same class of problems can be solved by NCO, a method that has shown promising results, particularly since the introduction of Graph Neural Networks. Given recent advances in both research areas, we introduce Hamiltonian-based Quantum Reinforcement Learning (QRL), an approach at the intersection of QC and NCO. We model our ansatzes directly on the combinatorial optimization problem's Hamiltonian formulation, which allows us to apply our approach to a broad class of problems. Our ansatzes show favourable trainability properties when compared to the hardware efficient ansatzes, while also not being limited to graph-based problems, unlike previous approaches. In this work, we evaluate the performance of Hamiltonian-based QRL on a diverse set of combinatorial optimization problems to demonstrate the broad applicability of our approach and compare it to QAOA.
Author Lorenz, Jeanette Miriam
Coelho, Rodrigo
Wille, Robert
Rosskopf, Andreas
Kruse, Georg
Author_xml – sequence: 1
  givenname: Georg
  surname: Kruse
  fullname: Kruse, Georg
  email: georg.kruse@iisb.fraunhofer.de
  organization: Fraunhofer IISB,Erlangen,Germany
– sequence: 2
  givenname: Rodrigo
  surname: Coelho
  fullname: Coelho, Rodrigo
  email: rodrigo.coelho@iisb.fraunhofer.de
  organization: Fraunhofer IISB,Erlangen,Germany
– sequence: 3
  givenname: Andreas
  surname: Rosskopf
  fullname: Rosskopf, Andreas
  email: andreas.rosskopf@iisb.fraunhofer.de
  organization: Fraunhofer IISB,Erlangen,Germany
– sequence: 4
  givenname: Robert
  surname: Wille
  fullname: Wille, Robert
  email: robert.wille@tum.de
  organization: Technical University Munich,Munich,Germany
– sequence: 5
  givenname: Jeanette Miriam
  surname: Lorenz
  fullname: Lorenz, Jeanette Miriam
  email: jeanette.miriam.lorenz@iks.fraunhofer.de
  organization: Fraunhofer IKS, Ludwig Maximilian University,Munich,Germany
BookMark eNotjL1OwzAURo0EA5Q-AQx-gQT_JbZHiApFiqiKgLW6Sa6RpcSuXGeApycSnb5zzvDdkMsQAxJyx1nJObMP-2ZTM2GqUjChSsa4sRdkbbU1UvJKcanNNfnawuTHHIOHUDzBCQe6nyHkeaLv6IOLqccJQ6YtQgo-fNMl0TecE4y0iVPnA-SY_GK7Y_aT_4XsY7glVw7GE67PuyKfz5uPZlu0u5fX5rEtPNd1LjTgoCuQ0qLkymiGHG1vpHO21sLZSneVXRCNHcAp2UFvHHZGGOxBGZArcv__6xHxcEx-gvRz4MwIrhSTf6fDUHo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QCE60285.2024.00189
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331541378
EndPage 1627
ExternalDocumentID 10821440
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-7aed75a339e314870e1e9c83ff9672f957b59967e89daf43bac8feb828eca48a3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001438831500179&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 15 06:21:19 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7aed75a339e314870e1e9c83ff9672f957b59967e89daf43bac8feb828eca48a3
PageCount 11
ParticipantIDs ieee_primary_10821440
PublicationCentury 2000
PublicationDate 2024-Sept.-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
PublicationTitleAbbrev QCE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.890365
Snippet Advancements in Quantum Computing (QC) and Neural Combinatorial Optimization (NCO) represent promising steps in tackling complex computational challenges. On...
SourceID ieee
SourceType Publisher
StartPage 1617
SubjectTerms Combinatorial Optimization
Graph neural networks
Hands
Hardware
Neural Combinatorial Optimization
Optimization
Quantum algorithm
Quantum Reinforcement Learning
Reinforcement learning
Title Hamiltonian-Based Quantum Reinforcement Learning for Neural Combinatorial Optimization
URI https://ieeexplore.ieee.org/document/10821440
Volume 1
WOSCitedRecordID wos001438831500179&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHhSseKbHLxG95XX1dLSg9RWtPRWkuysFGwrbdff70y6Pi4evC2BZWHy-PabzPcNYzfeJEFl4IWRAKIweA7aopDC5BXCrSwVxGLM8YMeDMxkYoeNWD1qYQAgFp_BLT3Gu_xyGWpKleEON-TwhQx9V2u9FWs1TkJpYu9Gna5CuJTI-jLyxE6pd_uvnikRMnoH__zYIWv_iO_48BtWjtgOLI7ZuE-JCPxPw9kU94g8JR_VGJR6zp8gmp-GmOfjjV_qK8chTs4b7o3jnkf-S-waFxt_xENi3qgv2-yl133u9EXTEkHMUq02QjsotXR5biFHIqMTSMEGDGxllc4qK7UnvxUNxpauKnLvgqnAI60Csi93-QlrLZYLOGXc-iJIkuZ6B8hBnClN4ZSR-IYxIagz1qagTN-3rhfTr3ic_zF-wfYp7lRLkcpL1tqsarhie-FjM1uvruNcfQLkdph-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF2kCnpSseK3e_C62iT7ebW0VKy1lVp6K7ubiRRsK7Xx9zu7jR8XD97CQgjMZPflTea9IeTK6YaXKTimBQDjGs9Bw7lgOisQbkUuITZjjrqq19PjselXYvWohQGA2HwG1-Ey_svPF74MpTLc4To4fCFD3xScp8larlV5CSUNczNotiQCpkDelwZX7CRMb_81NSWCRnv3n4_bI_Uf-R3tfwPLPtmA-QEZdUIpAr_UMJ_sFrEnp4MSw1LO6BNE-1MfK320ckx9obhEg_eGfaW465EBB36Nrxt9xGNiVukv6-S53Ro2O6waisCmiZIrpizkStgsM5AhlVENSMB4DG1hpEoLI5QLjisKtMltwTNnvS7AIbGCYGBus0NSmy_mcESocdyLIM51FpCFWJ1rbqUWeIfW3stjUg9BmbytfS8mX_E4-WP9kmx3hg_dSfeud39KdkIOQmdFIs5IbbUs4Zxs-Y_V9H15EfP2Cf9wm8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Quantum+Computing+and+Engineering+%28QCE%29&rft.atitle=Hamiltonian-Based+Quantum+Reinforcement+Learning+for+Neural+Combinatorial+Optimization&rft.au=Kruse%2C+Georg&rft.au=Coelho%2C+Rodrigo&rft.au=Rosskopf%2C+Andreas&rft.au=Wille%2C+Robert&rft.date=2024-09-15&rft.pub=IEEE&rft.volume=1&rft.spage=1617&rft.epage=1627&rft_id=info:doi/10.1109%2FQCE60285.2024.00189&rft.externalDocID=10821440